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Introduction

During the last decades, mathematical modelling has become a powerful as-
set to explore biological phenomena and to detect obvious but also hidden
mechanisms that might have not been known previously solely based on the
experiment observations.
In a figuratively sense mathematics has become biology’s next microscope,
able to reveal otherwise hidden understandings.
Mathematical models have already been used centuries ago by Euler to model
the age structure of stable populations, the logistic equation for population
growth by Verhulst and the Lotka-Volterra predator-prey model that is even
now frequently used to describe the dynamics of two interacting species [104,
105].
Most mathematical models’ goal is to replicate the observation that has been
made in experiments and to translate them to a more general setting to pre-
dict observational outcomes that otherwise would be impossible to obtain in
reality.

The work carried out in the present thesis is motivated by the comprehen-
sion of the complex mechanisms behind the cell dynamics and interactions
between immune and tumour cells in microfluidic chips. In recent years
there was the development of Organ on Chip technology (OOC) [1, 15, 31,
36, 55] and the related availability of data coming from laboratory experi-
ments. Here, in the framework of OOC we are focused on Tumour-on-Chip
(TOC) experiment [31, 97, 141], designed to assess the effects of therapeutic
drugs on cancer cells and on the possible reactions of the immune system.
The aim of this thesis are manifold: the construction of a macroscopic chemo-
taxis model to reproduce the main features of the observed phenomena (cell
migration driven by a chemical stimulus, short and long-range interactions
between immune cells); the development of accurate and stable numerical
approximation schemes in order to obtain a simulation algorithm, based on
the mathematical model, able to reproduce the qualitative behaviour of cells
observed in OOC laboratory experiments; the development of robust tech-
niques for the estimation of model parameters in order to perform the val-
idation of the mathematical model and the discovery of new and unknown
features by predictions.
These can be predictions about the future behaviour in an existing experi-
mental setting, and simulations with a new set of experimental settings such
as different cell species, different chemicals etc.
When new results are obtained with such simulations and perhaps even new
features discovered, one can conduct the experiment.
If the experimental observations and results coincide with the results of sim-
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ulation, the new discoveries have been verified. Even when the results of
the experiment does not coincide with the simulation, the data obtained from
the experiment can be used for a training procedure against the simulating
model to modify and further improve the mathematical model. This cycle is
depicted in Figure 1.1.

Mathematical Model for Chemotaxis

In mathematics the migration of cells has been a widely studied field and
described at different scales: microscopic by describing the movement of
individual cells [54], but also in a macroscopic way that describes the cell
density as a whole through partial differential equations. A variety of mathe-
matical models for biological phenomena, including cell dynamics and cancer
can be found in [5, 42, 47, 71, 99, 118].
The most popular mathematical model to describe chemotactic cell migration
was proposed by Keller and Segel [83] in the 1970s. Their model is given by a
coupled convection-diffusion equation system with reaction term for the cell
density u(x, t) and the concentration of a chemical φ(x, t) that plays the role
of the chemoattractant ∂tu = ∇ · (−D1∇φ+D2∇u) ,

∂tφ = ∇ · (Dφ∇φ) + uf(φ)− φkφ.
(1.1)

The Keller-Segel model (1.1) describes the movement of cells u through a
parabolic partial differential equation which consists of diffusion, according
to Fick’s Law, and chemotaxis, driven by the gradient of the chemical con-
centration field.
The chemoattractant φ in (1.1) is also described as a parabolic partial dif-
ferential equation in which the dispersion of chemicals is also determined
through the diffusive term. The reaction term consists of the degradation
and production of chemoattractant by other cells or external sources.
However, the Keller-Segel model (1.1) has some disadvantages such as the
infinite speed of propagation. Then, it does not seems to be sufficiently pre-
cise to describe the migration of cells for short time scales [43]. For this
reason we also consider, at least in one dimension, a hyperbolic model that is
obtained by using Cattaneo’s Law:

∂tu+ ∂xv = g,

∂tv + λ2
c∂xu = 1

τ
(−v + f) ,

∂tφ = Dφ∂xxφ+ au− bφ,

(1.2)
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with cell density u, chemoattractant φ, flux v, chemotactic function f := f̂u

and source term g := ĝu where f̂ , ĝ can depend on u and φ.
Such model takes into account a certain delay τ > 0, also called relaxation
time, which describes the time needed for the flux to adapt to the gradient of
chemoattractant [54].
This system was analytically studied on the whole interval and on bounded
intervals in [60], and a numerical method, the Asymptotic High Order (AHO)
scheme, was introduced in [109] for the approximation of the hyperbolic
equations in (1.2). This new class of schemes increases the approximation
order when the solution becomes close to a stationary solution, making it in-
creasingly accurate for large times. In particular, these schemes are based
on standard finite difference methods, modified by a suitable treatment of
the source terms, and take into account the behaviour of the solutions near
non-constant stationary states.

Mathematical Model of Organ on Chip(OOC)

Based on the parabolic Keller-Segel model and the hyperbolic Cattaneo model,
and motivated by the laboratory experiment made on the microfluidic chip
[31, 141], we introduce a mathematical model mimicking the interactions be-
tween two cell populations, namely immune and cancer cells, see also the
paper [25], extracted from the work of this thesis and already published.
Although Keller-Segel models and Cattaneo models have been already stud-
ied for many decades, their application on Organ-on-Chips is a novelty.
Here in particular, we focus on Tumour-on-Chip (TOC) experiments, particu-
larly designed for testing the effects of chemotherapy drugs on the immuno-
competent behaviour.
In the two-dimensional chambers of the OOC we consider the following doubly-
parabolic model

∂tT = DT∆T − λT (ω)T − kT (t)T,

∂tM = DM∆M − div(f(M,φ))− kM(t)M,

∂tφ = Dφ∆φ+ αφT − βφφ,

∂tω = Dω∆ω + αωM − βωω,

(1.3)

with tumour cell density T , immune cell density M , chemoattractant con-
centration φ and cytokine ω, whereas in the microchannels connecting the
two dimensional chambers, we consider two approaches: a one-dimensional
version of the doubly-parabolic model used in the chambers
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∂tTc = DT∂xxTc − λTc(ωc)Tc − kTc(t)Tc,

∂tMc = DM∂xxMc − ∂xfc − kMc(t)Mc,

∂tφc = Dφ∂xxφc + αφTc − βφφc,

∂tωc = Dω∂xxωc + αωMc − βωωc

(1.4)

and a one-dimensional hyperbolic Cattaneo-like model:

∂tTc + ∂xv
T
c = −λTc(ωc)Tc − kTc(t)Tc,

∂tv
T
c + DT

τT
∂xTc = −vTc

τT
,

∂tωc = Dω∂xxωc + αωMc − βcωc,

∂tMc + ∂xv
M
c = −kMc(t)Mc,

∂tv
M
c + DM

τM
∂xMc =

(
fc − vMc

)
1
τM
,

∂tφc = Dφ∂xxφc + αφTc − βφφc,

(1.5)

where we indicate the one-dimensional quantities and functions with a c sub-
script.
The model parameters are the diffusion coefficients DT , DM , Dφ, Dω > 0,
growth and consumption rate of the chemicals α, β > 0, the chemotactic
term f := f̂M that describes the directed movement of cells M in response
to a chemical gradient, the tumour suppression function λT , representing the
killing rate of tumour cells T caused by the cytokine ω, drug administration
rate kM(t) and kT (t), and for the hyperbolic model the flux of immune and
tumour cells vM , vT and relaxation times τT , τM ∈ R≥0.
Since in the laboratory experiments on the OOC [31, 141] no growth of im-
mune and tumour cells outside the reservoir has been observed within the
time range of the experiments, we did not include growth terms to the mathe-
matical model (1.3)-(1.5) but it can be easily extended by adding an additional
source term that describes the cell growth.

Transmission Condition at Interfaces

An important property of this multi-domain problem is the introduction of
mass-preserving and positivity-preserving conditions involving the balancing
of incoming and outgoing fluxes passing through interfaces between the 2D
and 1D domains of the chip in absence of source terms.
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This is realized with the permeability Kedem-Katchalsky (KK) conditions, de-
scribing the crossing of the flux through a node [82].
The approximation of double-parabolic chemotaxis models for the 1D-Keller-
Segel model on networks was already considered in [19], however the trans-
mission conditions were only between 1D-1D interfaces and on each domain
the same parabolic model was considered.
Also transmission conditions between 1D-1D interfaces for the hyperbolic
model (1.2) have been already considered in [26, 27]. On the contrary,
transmission conditions between 2D-1D interfaces and with different types
of equations have not been considered in the literature before. Then, this
presents an original result of this thesis, published already in [25]. It is the
first numerical work where this new technique of switching size of the do-
mains and type of equations is introduced (parabolic-hyperbolic), in order
to develop mass-preserving and positivity-preserving schemes, see [25]. The
following equations are the KK-transmission conditions between 2D-parabolic-
1D-parabolic interface

Du∂xu (Lx, y, t)− fx (Lx, y, t) = K (uc (0, t)− u (Lx, y, t)) ,

Duc∂xuc (0, t)− fc (0, t) = K

[
(b− a)uc (0, t)−

∫ b

a

u (Lx, y, t) dy

]
(1.6)

for y ∈ [a, b] and the KK-transmission conditions between 2D-parabolic-1D-
hyperbolic interface

Du∂xu (Lx, y, t)− fx (Lx, y, t) = K (uc (0, t)− u (Lx, y, t)) ,

vc (0, t) = K

[
− (b− a)uc (0, t) +

∫ b

a

u (Lx, y, t) dy

]
(1.7)

for y ∈ [a, b], with Kedem-Katchalsky constant K ∈ R>0, and interval [a, b]

indicating the entry region of the micro-channels.

Numerical Discretization

For the proper discretization of (1.3) for both two-dimensional chambers,
we use a finite difference approximation, consisting in the Crank-Nicolson
method with additional artificial viscosity term to take into account the oth-
erwise very restrictive stability constants due to the dominant convection
[134].
The same discretization method is used for the parabolic model (1.4) for the
one-dimensional microchannels, whereas for the hyperbolic model (1.5), we
apply the AHO scheme [109], whereas for the hyperbolic-parabolic model
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(1.5) we apply second order AHO scheme, called in the following (AHO)2, for
the approximation of the hyperbolic equations in the system.
Special care has been taken for an appropriate discretization of the KK-
transmission conditions at the interfaces in order to ensure mass and pos-
itivity preservation. This has been achieved by including a ghost cell value
taken from the neighbouring domain and discretizing (1.6) and (1.7) properly
to ensure the conservation of mass.
From a stability point of view, the stability conditions for the modified Crank-
Nicolson method with f := f̂u and g := ĝu are

modified Crank-Nicolson


for 1D 4t ≤ 4x2

D+4xmax
i
|f̂ni |

for 2D 4t ≤ 1

D
4x2 + D

4y2 +

max
i,j
|f̂x,n
i,j
|

4x +
max
i,j
|f̂y,n
i,j
|

4y


(1.8)

and for the (AHO)2 scheme [109]

(AHO)2


Stability

 4x ≤ 4λcτ

4t ≤ 44xτ
4x+4λcτ

Monotonicity
∣∣∣ f̂ncλc ∣∣∣−ĝnc ≤ 1

(1.9)

with relaxation time τ > 0 and λc =
√

D
τ

.

The introduction of the transmission conditions induces also stability condi-
tions at the interfaces between the domains [25]. Although transmission con-
ditions for 1D-parabolic-1D-parabolic and 1D-parabolic-1D-hyperbolic have
been derived, no stability conditions have been characterized before. For
the 2D-parabolic-1D-parabolic interface we have worked out the following
stability conditions

4t ≤



1

D
(

1
4x2 + 1

4y2

)
+

2|f̂x,nNx+1,j |
4x +

|f̂y,nNx+1,j |
4y + K

4x

for f̂x,nNx+1,j < 0.

1

D
(

1
4x2 + 1

4y2

)
+
|f̂y,n
Nx+1,j

|
4y + K

4x

else.

4x2

D+4xσK for f̂n0 > 0

4x2

D+24x|f̂n0 |+4xσK
else,

(1.10)
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and for the 2D-parabolic-1D-hyperbolic interface the stability is given by

4t ≤



1

D
(

1
4x2 + 1

4y2

)
+

2|f̂x,nNx+1,j |
4x +

|f̂y,nNx+1,j |
4y + K

4x

for f̂x,nNx+1,j < 0.

1

D
(

1
4x2 + 1

4y2

)
+
|f̂y,n
Nx+1,j

|
4y + K

4x

else,

1+ρ

2λc
4x (ρ−1)−(4t2τ

−λc 4t4x)(ρ−1)+Kk
σ(1+ρ)
4x +

f̂n0
2λcτ

.

(1.11)
with ρ := λc−σK

λc+σK
.

The stability constraints due to the transmission conditions only depend on
the width σ of the channels and the constant K ∈ R>0 and has been shown to
be not as restrictive as the general stability conditions of the schemes.
With the complete discretization of the OOC-model we are able to simulate
the chemotactic movement and the interactions between the two different
cell species (immune and cancer cells) living in the microfluidic chip environ-
ment. The model have been tested on several chemotactic functions, each
describing different underlying mechanisms [49, 71, 140]:

• A proportional directional movement up a spatial gradient of chemoat-
tractant φ.

• A receptor saturation, such that chemotaxis of cells is reduced in areas
of high chemoattractant concentrations.

• Contact inhibition of locomotion.

• Interaction among cells to move up a spatial gradient of their own den-
sity.

The numerical results indicate that each model qualitatively reproduces the
actual laboratory experiment well, with only slight differences in the dynam-
ics on a smaller time scale.

Parameter Estimation of Convection-Diffusion Equation

The second part of this thesis is devoted to the recovery of the model param-
eters of the OOC model.
The parameter estimation problem is also known as inverse problem [10,
48], which in general is often very ill-posed and violates one of the three
properties proposed by Hadamard [64]. Usually the parameter estimation
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problem suffers from strong sensitivity to noise and errors and need to be
re-formulated for numerical treatment [48].
Typically the parameter estimation problem is reformulated into a non-linear
least square minimization problem [20]

arg min ‖ F (Θ)− udata ‖2
2, (1.12)

where F is a non-linear operator that computes the solution of the model in
dependence of the unknown model parameters Θ, and udata as the observation
data that are being used to fit the model [10].
The main challenges involved in the parameter estimation process are:

• Large computational costs due to the optimization methods, which in-
volve a large number of unknown parameters.

• Presence of many local minima, making it difficult for local optimization
method to find appropriate parameters.

• Sensitivity towards errors and noise.

A common numerical technique to overcome, or at least improve stability, is
represented by Tikhonov-regularization techniques [48]

arg min ‖ F (Θ)− udata ‖2
2 +λ ‖ Θ ‖2

2, (1.13)

which involve an additional regularization term inducing smoothness and
bounds to the parameter set Θ. The regularization parameter λ ∈ R≥0 is
being determined by the L-Curve criteria [12, 68].
In our work we mostly make use of such a regularization for all the parame-
ter estimations but we investigate also different norms for the regularization
term, namely an L1−norm ‖ · ‖1 and a combination of L1 and L2 norm, also
called elastic net [152]. The main differences of the L1 and L2-norm are:

• Robustness: L2-norm increases the cost of outliers exponentially, whereas
the L1-norm only takes the absolute value, so it considers the unknown
parameter values linearly and is more robust towards outliers.

• Stability: L2-norm is more stable than L1-norm in regards to the pa-
rameter estimation [85].

• Computational difficulty: L1-norm makes the cost function non dif-
ferentiable at certain points which requires special treatment [85].

• Sparsity: L1-norm tends to set parameter values to zero.

12



We show numerically that the parameter estimation results in better param-
eter recovery with smaller errors for the L2 norm but L1 provides a reduction
of parameters whenever no data are available to fit.
There have been many studies in the literature for the parameter estimation
of convection-diffusion equations [8, 80, 91, 110, 130].
Most problems that are being considered however only deal with the recov-
ery of the diffusion coefficient and not much work has been done for the
recovery of the convection coefficients due to difficulty because of convec-
tion dominance. In this thesis we start from already existing parameter es-
timation methods designed to recover the diffusion coefficient of diffusion-
convection equations and extend them to recover the convective parameters
as well when the velocity field depends on time.

In [91] a multigrid approach is presented which makes use of the benefits
that come from using a coarser grid resolution for the discretization of the
convection-diffusion equation:

• Reduction of local minima.

• Reduced computational costs.

Taking advantage of this multigrid approach and inspired by [91], we derive
a new multigrid parameter estimation method for the convection-diffusion
equation where both diffusion coefficient D as a scalar and convection term
v are estimated.

We then proceed to extend the parameter estimation methodology for the
case of time-varying parameters and present two original approaches of this
thesis how to realize it:

• Interpolation of in-between values between two time steps n and n+ 1.

• Temporal multigrid, which makes use of the coarser temporal grid to
reduce the parameter number.

Benefits of this extension are the reduced number of parameters that needs
to be estimated for time-varying functions and thus reduces the number of
local minima [91].
Lastly we propose a post-smoothing step convection-diffusion problems, an
original contribution to this work, where the convection term is not arbitrary
but is proportional to the gradient of the chemoattractant φ which is defined
as a parabolic partial differential equation.
We show that within the parameter estimation, we can apply a second esti-
mate

arg min ‖ H(Θv)− v ‖2
2 (1.14)
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with forward operator H which contains the condition under which the con-
vection term is constrained and the convection field parameter estimation
v. This estimation is improved through the additional information provided
by the forward operator H, which in the tested case is the parabolic partial
differential equation of the chemoattractant.

Particle-Density Transformation

Subsequent to the mathematical model of the OOC (1.3), (1.4), (1.5) and a
robust algorithm for the parameter estimation, we prepare the application of
parameter estimation of the OOC on real data. In the laboratory experiment
[31] the only data available at this point are the trajectories of individual
cells, obtained through automated cell tracking software.
In order to use such microscopic data on our macroscopic model, we give
a brief introduction to kernel density estimates [147], which allow a non-
parametric transformation of the cell trajectories into density without a-priori
knowledge about the underlying density function.
As an original contribution of the present thesis, a new parameter estima-
tion methodology, the kernel density estimate parameter estimation methods
(KDE-PE), is introduced that combine the kernel density estimate with our
extended parameter estimation methods. Such estimation algorithm enables
the calibration of macroscopic mathematical model directly with microscopic
data.
In order to test the KDE-PE method on microscopic data, we make use of the
acceptance-rejection method [73, 133] to produce microscopic data out of
the macroscopic data and then retransform them back into density by using
the kernel density estimation.

Parameter Estimation of OOC

After verifying that our KDE-PE does perform robustly under the kernel den-
sity estimate, we then transform the laboratory data, i.e the cell positions,
into density fields and conduct the parameter estimation on a simplified
model

∂tM = DM∆M − div (vM) (1.15)

with immune cell density M , diffusion coefficient DM > 0 and velocity field
function v which is defined as

v := f̂ = χ∇φ (1.16)

and is connected to the chemoattractant equation

∂tφ = Dφ∆φ+ αφT − βφφ. (1.17)
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The simplification are based on the available informations about the labo-
ratory experiment [31] and the data available for the parameter estimation
procedure.
Conducting the parameter estimate on several regions in the chambers of the
microfluidic chip, we are able to recover model parameters for the different
models.
We then provide some insights about the chemoattractant field and attempt,
based on assumptions made about the distribution, to reconstruct the chemoat-
tractant distribution through a parameter estimation method and obtain con-
clusions since no real information are available about the chemoattractant in
the experiment. In order to determine a model that describes the data and
at the same time reduces the complexity of the model, i.e. balances between
model complexity and good fit, we apply the Akaine information criterion
(AIC) [2] and the Bayesian information criterion (BIC) [124] which are meth-
ods to rank and compare models with each other.

The total framework from the laboratory experiment on the OOC to the fi-
nal result which is an appropriate mathematical model that replicates the
laboratory experiment is shown in the flow chart in Figure 1.1.

Main Results and Original Contribution

The main results and original contribution of this thesis are:

• A novel macroscopic mathematical model for the Organ on Chip that
is able to describe the different cell dynamics and interactions between
them within the microfluidic chip under chemoattractants and cytokines.

• A numerical approximation scheme for the OOC-model with mass-preserving
and positivity preserving transmission condition of multi-domain models
between two-dimensional and one-dimensional domains with different
types of partial differential equations (hyperbolic and parabolic).

• A robust parameter estimation method for general convection-diffusion
equations for the recovery of diffusion coefficients and velocity fields,
which can be dependent on space and on time.

• Extension of the parameter recovery for time-varying velocity fields in
convection-diffusion equations (Temporal Multigrid approach).

• Development of the KDE-parameter estimation method (KDE-PE) for mi-
croscopic data.

• The recovery of model parameters involved in the OOC-model based on
the laboratory experiment and the available data.
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• The reconstruction of the chemoattractant distribution which dictates
the dynamics of immune cells, but for which no data are available.

Plan of the Thesis

The thesis is structured into four parts.
In Part I, we introduce the Organ on Chip, a microfluidic chip lined with living
human cells for drug development and disease modelling. We explain briefly
the ability of microfluidic chips to host and combine a variety of different
cells. We also present the laboratory experiments made on these microfluidic
chips of the interaction between immune cells and cancer cells [15, 31, 55]
which motivated this work and already resulted in a published paper [25].
We will then state the key results that have been obtained in [31, 36] which
are essential in understanding the key mechanisms that are present in their
experiments in order to reproduce them in silico through a mathematical
representation, which is constructed in the following sections of Part I of the
thesis.
The first section is devoted to the analytical mathematical modelling of the
chemotactic movement and interactions between cells by presenting and
deriving the classical macroscopic model, the Patlak-Keller-Segel model, a
parabolic partial differential equation system but also consider a hyperbolic
model such as the Cattaneo models, which are able to capture short time
range properties better.
With these models as foundation we proceed to the following section. There
we define the so called Kedem-Katchalsky transmission conditions which are
mass and flux conserving interface boundary conditions. These are important
properties to appropriately define chemotactic models on multiple domains
of different spatial dimensions which has not been studies priorly and ensure
that the total mass of cells is conserved.
The novel mathematical model of the OOC with the KK-transmission condi-
tion allows us to properly define the laboratory experiment conducted in [31]
and to attempt the replication of the laboratory experiment in silico.
The background necessary for the numerical solution of the model is pro-
vided in the following sections. We present the finite difference schemes
and we define important but known numerical properties such as stability,
consistency and convergence and derive the proper discretization of mass-
preserving boundary conditions which is an important property of our math-
ematical model.
Furthermore we also present the AHO schemes [6, 109], for the one-dimensional
hyperbolic model defined in the microchannels.
The last section of Part I is devoted to the discretization of the mathemati-
cal model of the laboratory experiment. We conduct numerical experiments
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with a set of model parameters which are appropriately chosen or taken ex-
perimentally from other works [104, 105]. We investigate the differences
between a variety of different chemotactic models and present the numeri-
cal results qualitatively and quantitatively as an original contribution to this
novel mathematical model for OOC.
We continue with Part II, which is devoted to the estimation of model param-
eters in chemotactic models.
The estimation of model parameters represents a typical inverse problem,
here defined as a minimization problem in a given metric. For this reason we
firstly present the numerical background about non-linear optimization meth-
ods, for which numerical analytical theory of non-linear and linear equation
system is needed, and then we proceed with the formulation of the param-
eter estimation problem as an ill-posed inverse problem for which special
care must be taken in form of proper regularization which is frequently used
in practise in order to formulate a minimization problem that can be solved
with satisfying results.
The penultimate section of Part II presents a multi-grid approach, inspired
by the work of [91] to solve the minimization problem. First proposed by [91,
110] for multiphase porous media flow in order to estimate a space varying
permeability coefficient, we modify their approach for chemotactic models
that includes the velocity field parameters of the convection term and extend
their work by several known regularization techniques with the aim of im-
proving the results of parameter recovery for convection dominant models.
Furthermore, additional post smoothing steps for an improved performance
have been developed.

The newly improved algorithm for the recovery of model parameters is then
tested on different examples and their results and quality compared and eval-
uated.
In last part of this thesis, Part III, we do the next step by introducing a cal-
ibration procedure for parameters of the mathematical model of the OOC
against experimental data.
In the first section of this part we describe how the data have been obtained
from the laboratory experiment, and in the following next section we focus
on how such data, which are only available in microscopic form as cell po-
sitions, can be properly transformed with a kernel density estimate which is
a non-parametric density estimation method frequently used in the field of
statistics.
We present how the transformation from macroscopic data, in form of den-
sity, to microscopic data, in form of cell positions can be achieved through
non-uniform random variate generation, and vice versa and investigate the
errors involved in such transformation.
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We conclude by extending our non-linear multigrid parameter estimation
method for diffusion and convection parameters with the kernel density es-
timate, the so called KDE-PE method, a novelty in the context of parameter
fitting of microscopic data for macroscopic models and evaluate the quality
of parameter estimates on several test equations.
Lastly, as a first attempt in the field of parameter estimation for mathematical
models for OOC, we use all the previously presented data preparation tech-
niques and original numerical methods to apply the parameter estimation on
the mathematical model of the laboratory experiment on the real data. This
Chapter 8 combines all the previously discussed sections of this thesis from
the mathematical modelling, and the numerical approximation of solutions,
to the non-linear optimization, parameter estimation and data preparation.
Several assumptions have been made in order to simplify the calculations as
much as possible and increase robustness.
The results are visually shown in a particle representation that compares the
real data with the artificially created particle based on the results of the pa-
rameter estimation.
These results are being used in an attempt to reconstruct a possible chemoat-
tractant field, for which no data are available. The KDE-PE method is then
applied to the mathematical model of the laboratory experiment for different
chemotactic functions and the results compared through so called informa-
tion criteria such as Akaike Information Criteria (AIC) [145] and the Bayesian
Information Criteria (BIC) [124]. These are model selections criteria that
measure the quality of each model relatively with each other by penalizing
overfitting. Based on these criteria, a choice that balances the goodness of fit
and simplicity of the model helps to determine which intrinsic cell movement
mechanics are present in the laboratory experiment.
In Part IV we summarize the results obtained so far and discuss the chal-
lenges that has been appearing and we conclude this work with a prospective
look for future research and possible improvements.
The results in this thesis are partially continued in one published paper [25],
and two other papers in preparation.
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Figure 1.1: Representation of the mutual interdependency between mathematical mod-
elling/simulation and in vitro experiment. Results from laboratory settings can be used to
construct and improve mathematical models, which in turn can make predictions and discov-
eries that can be examined in new experiment setting proposed by the model, which creates
new results to further improve the quality of the mathematical model.
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Figure 1.2: Outline of the thesis, which is based on the OOC experiment and divided into
mathematical modelling and numerical analysis, and into obtaining data and data prepara-
tion, which combined can be used for an appropriate model parameter estimation and thus
leads to a model that can be used for predictions and experiment suggestions.
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Part I

A Multi-Domain Transmission
Model for Organs-on-Chip



Organs-on-Chip (OOC)

1.1 Organs-on-Chip (OOC)

Biological experiments can be roughly classified in three categories: In vivo,
in vitro and in silico.
In vivo (Latin for "within the living") experiments, in which biological effects
are studied on the whole living organism. Examples are drug testing on ani-
mals and the pathogenesis of diseases by comparing the effects of bacterial
infection with the ones of purified bacterial toxic.
The other category are in vitro (Latin for "in glass") experiments. These ex-
periments are conducted on test tubes, petri dishes, using only components
of an organism. Advantages of such experiments over the in vivo experi-
ments are the reduced complexity which makes it otherwise difficult to iden-
tify interactions between biological components. In vitro experiments are
convenient for detailed studies which otherwise would remain obscure if not
analysed isolated from the organism.
However it can be challenging extrapolating in vitro results to the in vivo be-
cause the overall effects of an experiment on a living subject can differ from
the results in vitro due to additional interactions which were not present in
the in vitro experiment.
Organ on Chips are recently developed microfluidic chips, engineered to me-
chanics and surrounding physiochemical environment of a living organism
are recreated by essential increasing the complexity of in vitro systems. This
allows microfluidic chips to recreate in vivo systems on a in vitro system.
The third category is in silico experiments, which are performed via com-
puter simulations which are based on the modelling of biological processes
and mechanisms.
In silico experiments and in vitro experiments go hand in hand such that data
which are more easily obtained through in vitro experiments, can be used to
build and further improve the in silico experiments. In silico experiments on
the other hand can gain insights by computer-based simulations and model
analysis, providing a possible key of finding new mechanisms and features
which then can be tested in vitro for verification and for more data to further
improve and modify the in silico experiments.

To identify interactions and reactions, i.e. the so-called "toxicity mecha-
nisms", requires highly complex in vitro test systems. It is crucial that these
test systems include defined metabolic performances of individual organs,
as well as the potential involvement of the immune system. To capture the
complex mechanism of action at the systemic level, taking into account organ
interactions, animal models have been used to date [139].
It should be noted that due to evolutionary differences in the adaptation to
different habitats and nutritional strategies, animal models show species-
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Organs-on-Chip (OOC)

Figure 1.3: Organs-on-Chip

Figure 1.4: Human-On-Chip: A composition of several Organ-on-Chips to recapitulate the
microarchitecture and functions of humans.
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Organs-on-Chip (OOC)

specific physiological differences compared to humans. Furthermore, the
ethical aspect should not be disregarded. In order to be able to offer an eth-
ically justifiable alternative to animal experiments, the advantages of organ-
on-a-chip models present themselves here [103].
The aim of organ-on-a-chip models is to reproduce microphysiological condi-
tions as lifelike as possible in vitro, thus avoiding the typical disadvantages
of conventional cell cultures as far as possible. A major challenge in the cul-
tivation of complex, three-dimensional organ models under physiologically
relevant conditions is the maintenance of their function over longer periods
of time. Microfluidics and the microfluidic perfusing biochip systems based
on it form the basis for the long-term and standardised supply of such ar-
tificial tissues and therefore represent a significant further development of
previous cell culture approaches. Potential applications of organs-on-a-chip
and multi-organ systems include [94]:

• Drug development

• Toxicity screening

• Disease models

• personalised medicine and precision medicine (Person-on-Chip)

Organs-on-Chip models have a wide range of applications and offer great
potential. To give a few examples of Organs-on-Chip systems [94]:

• Liver-on-Chip

• Heart-on-Chip

• Brain-on-Chip

• Lung-on-Chip

• Tumour-on-Chip

We will deal with the latter two in the following:

Lungs on chips

Up to this point, it is unfortunately not possible to mimic a complete lung
yet. Nevertheless, Huh et al [11] have managed to reproduce the function of
an alveolo-capillary membrane, the smallest functional unit in the lung. This
organ is vital when trying out new drugs because it is the physical barrier
between the body and the external world. To recreate this membrane, poly-
dimethylsiloxane (PDMS) was used, which is coated with collagen for better
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Organs-on-Chip (OOC)

cell adhesion and the epithelial cells, which are in contact with the air, on
one side and the endothelial cells, which are filled with a fluid made from
nutrients instead of blood are in contact, on the other hand, separates.

Tumour on Chip (TOC)

In order to be able to study the survival and multiplication of malignant cells,
the microenvironment in which cancer cells interact is to be simulated phys-
ically and chemically. The progress of research into replicating the tumour
environment is much faster than with other chips: many articles already deal
with this topic [90, 148]. Many tumours on chips were developed to test new
treatments with different dosages [90]. Kim et al. [96] developed an auto-
matic, programmable system to determine the optimal concentration. The
efficiency of their system has been demonstrated on PC3 cells (prostate can-
cer cells) with a combination of doxorubicin and mitoxantrone.

1.1.1 Biological Framework

The in vitro experiment on a microfluidic chip, which inspired this work, is the
investigation of interaction between cancer and immune cells in the context
of immune competence and immunodeficiency to obtain insights of cancer-
driven dynamics of immune cells.
We also refer to these papers [1, 15, 31, 141] for a more detailed explanation
of the laboratory settings and focus more on the main ideas for the sake of
focusing on the future mathematical modelling of the experiment.

OOC-Experiement: Crosstalk between cancer and immune cells

For the experiment in [1, 15, 31, 141] two types of spleen cells of mice are
used. The Knock-Out type (KO-type) mice spleen cells which have a defect (a
deficient for iterferon regulatory factor 8,IRF-8) that regulates the immuno-
surveillance of immune cells and B16 melanoma cells interactions.

Immunosurveillance are processes of the host immune system to limit or sup-
press tumour growth, which is compromised in the case of KO-types.
The other type of immune cells are from the spleen of wild type (WT), where
the defect is not present.
In in vivo experiments it was observed that the KO-type immune cells are not
highly responsive in the presence of B16 melanoma growth and also are not
efficient in tumour suppression.
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Figure 1.5: Illustration of OOC loaded with melanoma cells B16 and spleen cells [1].

Figure 1.6: Left: Two-dimensional planimetry of the center area of the OOC (see figure on
the right). The platform design features two center end-closed channels, adjacent to two cell
culture compartments, connected via four sets of micron-size channels. Arrows and dotted
lines represent the sizes of the indicated structures expressed in µm. The height of the
microchannels is 10 µm. Right: Illustration of OOC. Blue region shows the two-dimensional
planimetry [31].
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For the in vitro experiment on the Organ on Chip, the cancer cells , B16-
melanoma, and the two immune cell types, KO-type and WT-type were ex-
tracted from the spleen of mice and co-cultured.
Additionally further substances were extracted as well to create a more reli-
able in vivo environment on the chip.

The microfluidic chip that is being used in the experiments is fabricated in
PDMS, a biocompatible silicone elastomer. The chip contains six reservoirs
for cell loading and culture medium replacement and four compartments for
cell cultures. Two reservoirs for both immune and tumour cells each will be
loaded.
The left chamber that is connected to the reservoir of the tumour cells is con-
nected via microchannels to the two center compartments, which are con-
nected to the right chamber via microchannels as well.
In the experiment the spleen immune cells passively migrate into the two
central compartments through the micro-channels and stop until sensing a
chemo-attractant signal.
A more detailed schematic view can be seen in Figure 1.5. The time-lapse
recordings were performed with a Juli Smart microscope [31] where a de-
fined region (see Figure 1.8) can be recorded by 2 minutes per frame for a
total of 48 hours of the experiment.
Additionally to the obtained video recording, an automated cell tracking pro-
gram, TrackMate© [137], as been employed to analysis the trajectories of
the cells.

We will briefly describe the experimental outcomes of the laboratory test
made with WT- and KO-type immune cells.
In the experimental settings it was shown that WT-type cells have a much
higher motility rate and migrated through their chamber through the micro-
channels into the right chamber where the tumour cells are present, whereas
the KO-type cells showed a much lower motility rate and impaired motility to-
wards the microchannels at which other end the tumour cells are located.
After a certain amount of time many WT-type immune cells can be found in
the proximity of the tumour cells whereas this was not the case for the KO-
type cells where the interaction between them and the tumour cells were
only of short duration.
Additionally to this, it was shown that the tumour cells show slightly higher
motility rates in presence of KO-type cells in contrast to slower in presence
of WT-type cells.

These observations (here simplified, see [31] for further details) have been in
coherence with in vivo results and confirms that the OOC laboratory experi-
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Figure 1.7: Defined region that has been able to be recorded through the microscope [141].

ment (in vitro) was able to reproduce key aspects that has been observed in
real mice in vivo.
The experiments conducted and published in [31], with the video footage
were used for a more data-driven analysis in [15] to investigate the trajecto-
ries of the individual cells based within stochastic process theory.
It was worked out that KO-type cells have shown to perform pure uncor-
related random walks whereas the WT-type cells performed drifted random
walks, more coordinated towards the tumour cells.
In Figure 1.8 the trajectories indicating these results can be seen.
In later works [15, 141] it can be deduced that each tumour cell secreted
a diffusing chemoattractant which generated an interaction range that can
attract WT-type immune cells and can give an explanation to the drifted ran-
dom walks of these types of cells and that these immune cells are capable of
generating cytokines, a chemical that leads to an eradication of tumour cells.

The generalized results in this biological framework can be summarized in
the following:

• Two cell cultures are present in each experiment: WT/KO-Immune cells
and tumour cells.

• KO-type immune cells move in a uncorrelated random walk, indicating
normal diffusive behaviour.
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Figure 1.8: Exampled of immune cell trajectories performed by WT-cells and KO-type cells.
KO-type cells show a uncorrelated random walk movement and WT-type cells show strongly
directed diagonal movement through the right chamber into the left chamber through the
micro-channels [1].

• WT-type immune cells migrate in a strongly directed movement towards
turmour cells, following a chemoattractant gradient.

• Tumour cells are local sources of chemoattractant.

• WT-type immune cells generate a cytokine, expanding and eradicating
tumour cells.

• Chemicals diffuse through the OOC.

Further inference based on the laboratory settings on the OOC are that both
cell populations are being loaded in their reservoirs from which they migrate
into their compartments, the immune cells on the right compartment and the
tumour cells into the left. This means that at the beginning of the experiment
the highest concentrations were located in the reservoirs, which in conclu-
sion means, that the chemicals produced by both cells, have their highest
concentration in the reservoirs as well, diffusing through the microfluidic
chip.
Based on these observations and deductions, we derive a mathematical model
to describe the laboratory experiments appropriately.
Finally it can be said that the in vitro experiment in [15, 31, 141] on the organ
on chip have been in coherence with the actual in vivo experimental obser-
vations of the interactions between immune cells and cancer cells and shows
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how the OOC is able to reproduce such results. The advantage of the exper-
iment on the microfluidic chip is that the observation data obtained through
it can be further analysed and gives further insight about the mechanics and
effects within the interaction which then all can be used to derive an appro-
priate mathematical model that, in the best case, not only reproduce the in
vitro experiment in silico but also makes correct predictions and new discov-
eries which then can be tried to verified in vitro.

1.1.2 Accession of Data with TrackMate©

Over the last decades, a lot of research has been made in the study of cell
migration. Parallel to this also the development of imaging processing has
been tremendously improved [137].
Many programs have been designed to study cell movements through live-
cell imagining, i.e recordings, tracking them over time.
Many of those tracking tools must either be adapted for a individual live-cell
imaging due to different laboratory settings, or entirely built from scratch.
This involves detection tools to extract cells from images, linking tools that
required to track cells over the time of the recordings, visualization tools to
overlay the raw data and tracking results and lastly analysis tolls that can
evaluate the data.
These difficulties are the reason why it is still common to rely on manual
tracking tools.
However there are many automated, semi-automated and manual single-cell
tracking software available that are highly adjustable and user friendly for
the end user thanks to an easy accessible graphical interface.
One of those software is TrackMate©, an open and extensible program for
the single-cell tracking.
TrackMate© is a plugin within the Fiji ImageJ distribution, an imagine pro-
cessing tool, that allows highly adjustable tracking of image recordings. The
tracking procedure in TrackMate© consists of several steps that range from
choosing the algorithm for the detection and tracking of single cells, to vari-
ous tools to inspect intermediate results and adjust the settings for improved
results.
Each cell can be tracked individually and be marked according to individual
choices or to numerical values such as cell diameter, shape, track length,
track displacement and so on.
Although automated, the manual inspection of the intermediate results al-
lows for immediate changes in the tracking and the available visualization
tools like the overlay of the trajectories of cells eases the readjusting.
An important asset is the configuration of the detection tools that are able to
detect linking, gap-closing, cell splitting or merging events which can all be
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set manually by the user.
The three classes of particle-linking algorithms in TrackMate© are derived
from the Linear Assignment Problem (LAP) framework where the linking
costs are calculated through the squared instance between cells, Kalman fil-
ter to tackle linear motions and nearest-neighbour search [137].

This software has already been used in protein motility studies, molecu-
lar motor tracking, sperm cell tracking, wound healing, cell movements on
stiffness-patterned substrate and in zebra fish and many other studies.

Data from OOC experiment

The cell tracking of the laboratory experiments has been accomplished with
TrackMate©. The live-cell recordings of the experiments on a section of the
OOC (Figure 1.8) consist of 720 frames, each taken between a 2 minutes
interval. The tracking software detects the cells in both chamber visible in
the recording and tracks their movements through the 720 frames. Gap-
closing events take into account the disappearance of cells in missing frames.
In Figure 1.8 the cell tracking of the laboratory experiment can be seen step
by step.
The data obtained through TrackMate© contain a list of labelled cells with
their respective positions and velocities based on their tracked trajectories
for each frame between 1 to 720.
This data can be easily imported into other software such as MATLAB© for
further use such as in the parameter estimation process.
For our purpose only the detection and localization of cells per frame is being
used in the parameter estimation of the OOC model.
The additional information of velocity and trajectory will not be used at this
point but may be used in future works.

1.2 Parabolic and Hyperbolic Model for Chemo-

taxis

The migration of cells due to the influence of chemicals is known as chemo-
taxis. Many models in form of partial differential equations have been pro-
posed to describe this evolution on a macroscopic level, considering each cell
not individually, but as a density.
One of the most considered model is the Patlak-Keller-Segel system [83].
Originally it was meant to model the aggregation behaviour of Dictyostelium
discodeum, a cellular slime mold, classified as eukaryotic organisms that can
live as single cells independently but also are able to aggregate with each
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other to form multicellular reproductive structures. Motivated by the iden-
tification of the chemical which acts as acrasin, they aimed to deduce the
co-operative behaviour of the cellular slime mold from their individual prop-
erties.
The relevant quantities in their model are the density of the cellular slime
mold u(x, t), the concentration of the chemical acrasin φ(x, t), the concen-
tration of the enzyme acrasinase η(x, t) that degrades acrasin and lastly a
concentration of a complex c(x, t) that forms when acrasin and acrasinase
react with each other.
Keller and Segel [83] proposed the following assumptions for their model:

• Acrasin is produced by the amoeba at the rate of s(φ) per amoeba.

• Acrasinase is produced by the amoeba at a rate of g(φ, η) per amoeba.

• Acrasin and acrinase react for form a complex which dissociates into
the free enzyme acrasinase and a degraded product

k1 k2

η + φ 
 c → η + degraded product,
k−1

(1.18)

where k1, k−1 and k2 are the reaction rates.

• Acrasin, acrasinase and the complex diffuse according to Fick’s law.

• The migration of amoebas is towards the direction of the increasing gra-
dient of the chemical concentration φ and a random motion analogous
to diffusion.

Based on the balance of mass, let V be an arbitrarily fixed domain with bound-
ary ∂V , then

d

dt

∫
V

udV = −
∫
∂V

Ju · ndS +

∫
V

QudV (1.19)

with flux vector Ju, outer normal vector n and net mass of amoeba cre-
ated/destroyed Qu per unit time and unit volume.
Applying the divergence theorem on the surface integral and having a domain
V which is not dependent on time (1.19)∫

V

∂tu+∇ · Ju −QudV = 0. (1.20)

Since this equation is true for all arbitarily domains V , we gain the differen-
tial equation

∂tu = −∇ · Ju +Qu. (1.21)
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Equation (1.21) is true for all the four quantities u, φ, η and c and we only
need to specify the flux J and Q for each of them.
By assumption, φ, η and c diffuse according to Fick’s law [54]

Jφ = −Dφ∇φ and respectively for η and c (1.22)

with constant diffusion coefficient Dφ, Dη, Dc ∈ R respectively.
As for the amoeba u, in accordance to the assumption made by [83], we obtain
the flux

Ju = −D2∇u+D1∇φ, (1.23)

where D1 and D2 can depend on φ and u.
In all flux terms J , the first term with positive constant be interpreted as
a spreading out, whereas the second term D1∇φ, exclusively to the flux of
amoeba, models the chemotaxis that describes the migration towards higher
concentration of φ.
As for the functions Q, the total mass of amoebas is assumed constant, hence
Qu = 0 and for the other quantities based on the other assumptions made

Qφ = us(φ)− k1φη + k−1c,

Qη = ug(φ, η)− k1φη + (k−1 + k2)c,

Qc = k1φη − (k−1 + k2)c.

(1.24)

Thus, the complete model can be written as

∂tu = ∇ · (−D1∇φ+D2∇u) ,

∂tφ = ∇ · (Dφ∇φ) + us(φ)− k1φη + k−1c,

∂tη = ∇ · (Dη∇η) + ug(φ, η)− k1φη + (k−1 + k2)c,

∂tc = ∇ · (Dc∇c) + k1φη − (k−1 + k2)c.

(1.25)

The model (1.25) can be further simplified and reduced to only two equations
for u and φ by making further assumptions.
One is to assume that the complex c is in a chemical equilibrium, thus

Qφ = 0. (1.26)

The second additional assumption made is that the total concentration of the
enzyme η is constant η0 and indicated by

η0 = η + c. (1.27)

Substituting these two assumptions into (1.25) reduces the model to ∂tu = ∇ · (−D1∇φ+D2∇u) ,

∂tφ = ∇ · (Dφ∇φ) + us (φ)− φkφ
(1.28)
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with
kφ = η0k2

K
1+Kφ

,

K = k1

k−1+k2
.

(1.29)

In other works found in the literature [47, 99, 105] similar models have been
derived where the chemotactic function and reaction terms differ from the
one used here.
The Keller-Segel model in its most general form [71] can be written as ∂tu = ∇ · (D(u)∇u− A(u)B(φ)C(∇φ)) + F (u),

∂tφ = Dφ∆φ+ uG(φ)− bφ,
(1.30)

but we will consider a "simplified" Keller-Segel model ∂tu = Du∆u− divf + g(x, y, t, u),

∂tφ = Dφ∆φ+ αu− βφ
(1.31)

with chemotactic function f = uf̂ for some analytical results and for the con-
struction of numerical schemes to solve (1.31) approximately.

Despite their ability to capture key phenomena, intuitive nature and rela-
tive tractability, the Patlak-Keller-Segel models are parabolic equations and
as such not sufficiently precise to describe the migration of cells for short
times due to the fast dissipation, since the diffusion implies an infinite speed
of propagation of cells which is highly unrealistic and not physical.
For these reasons models based on hyperbolic equations have been consid-
ered since the propagation speed in this formulation is finite, and show that
these models can be interpreted as a description of chemotaxis at a meso-
scopic level [43, 45, 50, 54, 117].
A model for chemosensitive movement was introduced by Hillen and Dolak
[45] and showed that their model was coherent with the observation made
on Dictyostelium discoideum and E. coli.
In the following we will derive this model in a general way.

The Cattaneo model [34, 78] is based on a modification of Fourier law of
heat conduction, which is the thermal equivalent of Fick’s law to describe
the propagation with finite speed.
Whereas in the Fick’s law, the relation between cause (a non homogeneous
density) and effect (a flux) is linear, the Cattaneo’s law is more reasonable in
the sense that there should be a time interval between cause and effect.
Let Θ(t,x) be the temperature of a homogeneous medium Ω ⊂ Rn and q(x, t)

the heat flux, then Cattaneo’s law is

q(x, t+ τ) = −D∇Θ(x, t) (1.32)
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with time delay τ > 0 describing the time of the flux q needed to adapt to the
negative gradient of the temperature.
Expanding the flux q(x, t+ τ) up to the first order in τ one has

τ∂tq(x, t) + q(x, t) = −D∇Θ(x, t). (1.33)

Combining Cattaneo’s law with an energy conservation equation leads to the
so called Cattaneo system.
If we generalize the context and consider u(x, t) as a cell density and v(x, t)

to be the cell flux, then the Cattaneo model is written as ∂tu+∇v = 0,

τvt + v = −D∇u.
(1.34)

We can use this approach to derive the corresponding Cattaneo model for
chemosensitive movement applied to the flux

w(x, t+ τ) = −Du∇u(x, t) + V (u, φ)∇φ(x, t)

⇒ τ∂tw + w = −Du∇u(x, t) + V (u, φ)∇φ(x, t)
(1.35)

with cross-diffusion coefficient V (u, φ).
The Cattaneo model for chemosensitive movement can be written as ∂tu+∇q = 0,

τ∂tq + q = −Du∇u+ V (u, φ)∇φ.
(1.36)

For τ → 0 (1.36) reduces to parabolic Keller-Segel model.

For long time ranges the same behaviour as for the Keller-Segel model can
be expected for the Cattaneo model. For shorter time ranges however, the
Cattaneo model is expected to describe the dynamics better due to the finite
characteristic speed. This was confirmed experimentally in [45] that both
models fit the data using realistic parameter values as given in [52] but dif-
ferences can be seen in time ranges up to about 40 seconds.

Of course there are a variety of other different ways to derive this class of
models, see [54], and at this point we want to briefly mention another deriva-
tion of the model through the anisotropic random walk with reaction. Using
this way we obtain the Greenberg-Alt model [58]

∂tu
+ + λ∂xu

+ = −µ+ (φ, ∂xφ)u+ + µ− (φ, ∂xφ)u−,

∂tu
− − λ∂xu− = µ+ (φ, ∂xφ)u+ − µ− (φ, ∂xφ)u−,

∂tφ−Dφ∂xxφ = α (u+ + u−)− βφ,

(1.37)
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where u± denotes the density of the right and left moving part of the total
density u, φ the chemoattractant and f a linear function.
The parameter Dφ > 0 is the diffusion coefficient and λ > 0 the characteristic
speed of propagation of u±.
The terms µ± are the turning rates, which control the transition event from
u+ to u− and vice versa.
By defining the total flux v = λ (u+ − u−) and total density u = u+ + u−, we
recover the Cattaneo model for chemosensitive movement (1.36).
The formulation of (1.37) will later be useful in derivation of numerical schemes
such as the asymptotic high order scheme [109] and for stability analysis us-
ing the monotonicity condition. For most of the following hyperbolic numer-
ical approximation we will focus on models for chemosensitive movement,
which is equivalent to (1.37), with

∂tu+ ∂xv = g(t, x),

∂tv + λ2∂xu = λ (µ− − µ+)u− (µ+ + µ−) v,

∂tφ = Dφ∂xxφ+ αu− βφ.

(1.38)

and source term function g(t, x).

1.3 Boundary Conditions

An interesting property of both models, the parabolic Keller-Segel model
(1.31) and hyperbolic Cattaneo model (1.38) when there is no source term
g = 0, is the mass-preservation under homogeneous Neumann boundary con-
ditions, also known as no-flux boundary conditions [101]. These results were
obtained in [61] and several analytical results such as existence of global so-
lution.
For the Keller-Segel model (1.31) defined on the two-dimensional domain Ω

we have

d

dt

∫
Ω

u (x, y, t) dΩ =

∫
Ω

Du4u (x, y, t)− divf (x, y, t) dΩ

=

∮
δΩ

(Du∇u (x, y, t)− f (x, y, t)) · ndS

=⇒ d

dt

∫
Ω

u (x, y, t) dΩ = 0, for (Du∇u− f (x, y, t)) · n|δΩ = 0,

(1.39)

resulting in mass-preserving boundary conditions.
For the one-dimensional Cattaneo model (1.38) under the same assumptions
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on the one-dimensional domain Ω := [0, L] we obtain

d

dt

∫
Ω

u (x, t) dx =

∫
Ω

−∂xv(x, t)dx

=⇒ d

dt

∫
Ω

u (x, y, t) dΩ = 0 for v(0, t) = v(L, t).

(1.40)

1.4 Permeability Kedem-Katchalsky Interface Con-

ditions

In view of the mathematical model we aim to derive, we have to deal with a
multi-domain problem where we have a transmission between the domains
Ωl and Ωr at an adjacent interface.
An important property for such transmission condition is the mass preserva-
tion.
The conservation of flux that has been described by Kedem and Katchalsky
[82] and named permeability Kedem-Katchalsky conditions (KK-condition in
short) describe such conservation of flux and have been already considered in
[119] in the approximation of multi-domain linear partial differential equation
problems with finite elements methods and also studied in [127] for reaction
diffusion problems.
Transmission conditions between 1D-1D interfaces are also considered in
[26, 27] for a network where on each arc the same parabolic model was
defined on. The numerical treatment of interface conditions are explained in
Chapter 3 in more detail.
However, transmission conditions at 2D-1D interfaces with different types
of partial differential equations, namely parabolic and hyperbolic, have not
been studied before and are an original contribution of the thesis which has
been already published in [25].

1.4.1 Interface between 1D-2D models

In the following we consider the two dimensional domain Ωl = [0, Lx]× [0, Ly]

and the one-dimensional domain Ωc = [0, L]. These two domains are con-
nected at the interface δΩinterface

l = {Lx} × [a, b] and δΩinterface
c = {0}. Fur-

thermore we assume no-flux boundary condition at the outer boundaries of
δΩl�δΩinterface

l and δΩc�δΩinterace
c = {L}. The schematization of the multi-

domain is indicated in Figure 1.9.
The two-dimensional parabolic Keller-Segel model (1.31) without source term
is defined on the domain Ωl.
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Figure 1.9: Schematization of the multi-domain with the two-dimensional domain Ωl :=

[0, Lx]× [0, Ly] connected through a one-dimensional channels Ωc := [0, L] at the node.

Now let us consider first the one-dimensional parabolic Keller-Segel model
(1.31) which is defined at the domain Ωc, then if there is no flux at
δΩc \ δΩinterface

c we have at the interface

d
dt

∫
Ωl

ul (x, y, t) dΩ +
d

dt

∫
Ωc

uc (x, t) dx = 0

⇔
∫

Ωl

Dul4ul (x, y, t)− divfl (x, y, t) dΩ = −
∫ L

0

Duc∂xxuc (x, t)− ∂xfc (x, t) dΩ

⇔
∫
δΩl

(Dul∇ul (x, y, t)− fl (x, y, t)) · ndΩ = − [Duc∂xuc (x, t)− fc (x, t)] |L0

⇒︸︷︷︸
no-flux BC

∫ b

a

(Dul∂xul (Lx, y, t)− fxl (Lx, y, t)) dy = Duc∂xuc (0, t)− fc (0, t) ,

(1.41)
which represents the continuity of flux at the 2D-1D interface.

Next we impose the Kedem-Katchalsky conditions [82] describing the con-
servation of the flux through a node which leads with (1.41) to the following
KK-2D (parabolic)-1D (parabolic)-transmission condition


Dul∂xul (Lx, y, t)− fxl (Lx, y, t) = K (uc (0, t)− ul (Lx, y, t)) , for y ∈ [a, b],

Duc∂xuc (0, t)− fc (0, t) = K

[
(b− a)uc (0, t)−

∫ b

a

ul (Lx, y, t) dy

]
.

(1.42)
If we now define the one-dimensional hyperbolic Cattaneo-model (1.38) in-
stead at domain Ωc we can derive under the condition of mass preservation

d
dt

∫
Ωl

ul (x, y, t) dΩ +
d

dt

∫
Ωc

uc (x, t) dx = 0

⇐⇒
∫

Ωl

Dul4ul (x, y, t)− divfl (x, y, t) dΩ =

∫ L

0

∂xvc (x, t) dx

no-flux BC
=⇒︸︷︷︸ ∮ b

a

(Dul∂xul (Lx, y, t)− fxl (Lx, y, t)) dy = −vc (0, t)

(1.43)
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and obtain the following KK-2D (parabolic)-1D (hyperbolic) transmission con-
ditions

Du∂xul (Lx, y, t)− fxl (Lx, y, t) = K (uc (0, t)− ul (Lx, y, t)) , for y ∈ [a, b]

vc (0, t) = K

[
− (b− a)uc (0, t) +

∫ b

a

ul (Lx, y, t) dy

]
.

(1.44)
The numerical treatment of the KK-interface condition (1.42) and (1.44) are
being worked out in Chapter 3 but can also be found in [25] which contains
result of this work.

1.5 Mathematical Modelling of OOC Experiment

Having described the laboratory experiment made on the microfluidic chip,
built the framework of the present biological mechanisms behind the lab-
oratory experiment and derived two prototypical mathematical models, the
parabolic Patlak-Keller-Segel model and hyperbolic Cattaneo model for chemo-
taxis, with which the evolution of the density of cells can be described, with a
proper definition of mass-preserving boundary conditions and mass-preserving
interface conditions, we will now continue to develop a mathematical model
devoted to reproduce the chemotactic movement and interactions between
the immune and cancer cells living in the microfluidic chip environment ac-
cording to the laboratory experiment. This is the first attempt of deriving a
mathematical model for OOC that has been made.
We begin with the proper definition of the domain by making several as-
sumptions and inferences and proceed with the mathematical modelling in a
similar way as for the Keller-Segel model.

The microfluidic chip, as shown in Figure 1.5 and formally described in a
biological framework, is composed of six reservoirs for cell loading and cul-
ture medium replacement and four chambers for cell culture. However it is
not necessary for the mathematical model to be defined over the whole chip
for two reasons. Firstly, the cell cultures passively move into the two cen-
tral chambers where they stop until sensing the chemoattractant from the
treated tumour cells.
Thus in the areas other than the chambers, the cell dynamics are expected to
be solely driven by diffusion.
Secondly, the cell cultures on the microfluidic chip have been observed and
recorded for only a defined region (see Figure 1.8) and from the cell tracking
only observational data from said region are available.
This leads to the justified assumption to only consider the defined region of
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Figure 1.10: Simplified schematization of the chip geometry [25].

the video recording as the computational domain for the mathematical model.
The two main culture chamber (a tumour and an immune cell compartment)
are connected through narrow capillary migration micro-channels. The ge-
ometry of the micro-channels are: 10µm in height, 500µm in length and 12µm

in width.
The geometry of the chambers are: 1mm in width and 100µm in height.
Because the video footage of the experiment is recorded at a fixed height,
the third spatial dimension will be neglected in our model.
Furthermore, we assume that the micro-channels are considered as one-
dimensional intervals with zero thickness. The reasoning behind this assump-
tion is the fact that the size of the immune cells are about 8−10µm of diameter
which is comparable to the width of the micro-channels with 12µm, allowing
us to assume a one-dimensional movement within the channels.
We summarize the assumptions for the computational domain as follows,
which is also depicted in the simplified schematization of the chip geome-
try in Figure 1.10.

• Coherently with the video recording, we consider only the defined re-
gion (see Figure 1.8) as computational domain with a left chamber Ωl

and right chamber Ωr connected through several microchannels Ωck .

• The left and right chamber Ωl := [0, Lx]× [0, Ly] and Ωr := [Lx + L, 2Lx +

L]× [0, Ly] are considered two-dimensional.

• The micro-channels Ωck := [Lx, Lx + L] are considered one-dimensional.

• The interface between the two chambers and the micro-channels are
located at δΩinterface

l = {Lx} × [ak, bk] , δΩinterface
ck

= {Lx, Lx + L} and
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δΩinterface
r = {Lx + L} × [ak, bk] with σ = bk − ak being the width of the

micro-channels at the nodes.

Model

Coherently with the experiment settings, we identify the relevant quantities
as:

• M is the density of the population of immune cells (macrophage).

• T is the density of the population of cancer cells.

• φ is the concentration of a chemical produced by the tumour cells T .

• ω is the concentration of a cytokine, produced by the immune cells M .

The assumptions made on the model are based on the inferences about the
intrinsic biological mechanisms:

1. The chemical φ is produced by the tumour cells T at a constant rate
αφ > 0 per tumour cell T and decays at the constant rate βφ > 0.

2. The cytokine ω is produced by the immune cells M at a constant rate
αω > 0 per immune cell M and decays at the constant rate βω > 0.

3. T , φ and ω diffuse according to Fick’s Law with constant diffusion coef-
ficients DT , Dφ, Dω > 0.

4. The immune cells M diffuse according to Fick’s Law with constant diffu-
sion coefficient DM > 0 and move in direction of a chemotactic function
f(M,φ), which is specified later in Section 1.6.

5. The cytokine ω is responsible for killing of tumour cells T , with killing
rate λT (ω) per tumour T .

6. Possible drug administration with an exponential decay rate in time that
can kill immune cells M and tumour cells T at the decay rate kT (t) per
tumour cell T (resp. kM(t) per immune cell M).

Taking assumptions 1-6 into our modelling, we can follow the same derivation
path used for the Patlak-Keller-Segel model (1.31) to obtain the following
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parabolic model in the two-dimensional chambers Ωl and Ωr

∂tT = DT∆T − λT (ω)T − kT (t)T,

∂tM = DM∆M − div(f(M,φ))− kM(t)M,

∂tφ = Dφ∆φ+ αφT − βφφ,

∂tω = Dω∆ω + αωM − βωω.

(1.45)

The same parabolic Keller-Segel like model can be also used to describe the
dynamical behaviour in the one-dimensional micro-channels as follows

∂tTc = DT∂xxTc − λTc(ωc)Tc − kTc(t)Tc,

∂tMc = DM∂xxMc − ∂xfc − kMc(t)Mc,

∂tφc = Dφ∂xxφc + αφTc − βφφc,

∂tωc = Dω∂xxωc + αωMc − βωωc.

(1.46)

A different approach for the modelling of the one-dimensional channels is
to consider a hyperbolic model, using a Cattaneo-like model as in (1.38) to
obtain 

∂tTc + ∂xv
T
c = −λTc(ωc)Tc − kTc(t)Tc,

∂tv
T
c + DT

τT
∂xTc = −vTc

τT
,

∂tωc = Dωc∂xxωc + αωMc − βcωc,

∂tMc + ∂xv
M
c = −kMc(t)Mc,

∂tv
M
c + DM

τM
∂xMc = 1

τM

(
fc − vMc

)
,

∂tφc = Dφc∂xxφc + αφTc − βφφc.

(1.47)

Such a hyperbolic model for the one-dimensional channels seems to be more
realistic due to their finite propagation speed which is the dominant property
at this scale.
The chemotactic function f that characterizes the intrinsic mechanics of the
directional movement of immune cells M influenced by the spatial gradient
of chemoattractant φ will be specified in Section 1.6.
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The tumour suppression function λT (ω) that describes the action of the cy-
tokine ω produced by immune cells M , which determines the death of tumour
cells T , is defined as

λT (ω) :=
kω1

kω2 + ω
(1.48)

with immune cells killing efficiency constant kω1 and dissociation constant kω2

as described in [105].
Although the tumour suppression is added into the numerical simulation in
Chapter 3 in order to include this effect in the model qualitatively, in the
laboratory experiments [1, 15, 31, 141] no information about the real killing
rate in the microchip environment induced by the cytokine ω is available
and no tumour cell deaths have been identified during the duration of the
experiments.
The drug administration functions are defined as

kT (t) : = KT e
−αT t

kM (t) : = KMe
−αM t

(1.49)

with the cell decay rate KT , KM and the drug decay rate αT and αM . We re-
mark that the drug administration does not occur in the current laboratory
experiments nor in the numerical simulations. However, for the sake of gen-
erality, they are included to address this phenomenon in future experiments
with drug testing.
Growth terms for both immune cells M and tumour cells T are not included
into our model, due to the fact that no growth has been registered during the
laboratory experiment outside the reservoir [31, 141].
The model is completed with appropriate initial conditions for each quantity
M ,T ,φ and ω and appropriate boundary conditions.
For the interface boundary conditions we apply (1.42) for the 2D-parabolic-
1D-parabolic model whereas for the 2D-parabolic-1D-hyperbolic model (1.44).
As for the outer boundaries, in the numerical simulations of Chapter 3 we
applied no-flux boundary conditions in order to have mass conservation in
absence of source terms. However, this is not realistic in the laboratory ex-
periment since there is an inflow of cells from the outer boundaries.
This case will be only considered in Chapter 8 for the parameter estimation
simulations. However the interface boundary conditions are applied in both
cases.
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1.6 Chemotactic Functions

We consider the following form of the Keller-Segel equations, which have
been frequently used to describe chemotaxis models, for the cell density u

∂tu = Du∆u− div
(
f̂u
)
. (1.50)

Most work regarding this equation are focused on the case, in which the
chemotactic term defined as f̂ = χ∇φ with chemotactic sensitivity function χ
which can depend on both, cell density u and chemical concentration φ.
Chemotaxis describes the movement of cells up or down the concentration of
the chemical φ, more precisely chemoattractant if cells migrate towards the
chemical concentration and chemorepellent if otherwise.
The gradient of the chemical concentration φ can be the result from diffusion
from an external source that releases the chemical, the depletion of chemical
caused by cells themselves or a local source such as cells that produce the
chemical themselves

∂tφ = Dφ∆φ+ αφu− βφφ, (1.51)

which assumes cell-dependent chemical production with production rate
αφ > 0 and linear self-degradation with decay rate βφ > 0.
The classical Keller-Segel model is composed of the two equations (1.50) and
(1.51). In [149] a theoretical mechanism in breast tumour is presented where
the tumour cells release an attractant for macrophages towards which these
immune cells migrate and release in turn a chemical that repels the tumour
cells away from the primary tumour. Other possible influences of chemotac-
tic movement of cells are density-dependent effects and contact inhibition
of locomotion (CIL). The former effect occurs when cells are in a compact
environment and restrict each others movements. The latter, as the name
indicates, occurs when cells force directional changes when they collide with
each other which has been investigated in [98].
In its most basic and most common form, the chemotactic sensitivity function
is defined as χ = k for a constant k ∈ R, which models only the migration to-
wards/away from the gradient of chemical φ, but does not consider any other
of the possible biological mechanism.
This basic model in combination with the Keller-Segel equations and the
chemical equation (1.51), which makes the model a linear convection-diffusion
equation system, has been studied in literature where many properties in-
cluding global existing solutions and blow-up at finite time have been worked
out [16].

In the following we will present various chemotactic terms f = f̂u = uχ∇φ
that describes the cell movements based on various biological hypotheses
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such as self-generating gradients, repulsive and attractive interactions be-
tween cells and cell crowding effects.
The migration of cells is composed by random components, the diffusion, and
a determined directional component, the chemotactic movement, describing
the movement towards or away from the gradient of a chemical concentra-
tion φ.

Most chemotactic sensitivity functions χ can be categorized to the following
classes:

• Signal-dependent sensitivity

• Density-dependent sensitivity

and we will investigate the following:

I Basic model (directional movement up a spatial gradient of chemoat-
tractant)

χ := k1 (1.52)

with cellular drift velocity k1 ∈ R.

II Receptor saturation [140]

χ(φ) :=
k1

(k2 + φ)2 (1.53)

with k2 ∈ R>0 representing the receptor dissociation constant.

III Overcrowding [71], [98])

χ(u, φ) :=
k1

(k2 + φ)2

(
1− u

umax

)
, (1.54)

where cell’s ability to move freely reduces at high cell densities as they
approach the maximum cell density umax ∈ R. This is also known as
contact inhibition of locomotion (CIL).

IV Interaction [49] (migration of cells in response to gradients of their
own density and of chemoattractant)

f̂ :=
k1

(k2 + φ)2∇φ+
η1

1 + η2u
∇u, (1.55)

where η1 ∈ R denotes the repulsion strength between cells and η2 ∈ R>0

the strength of the interaction which is reduced at high cell densities.

V Interaction [49] (chemoattractant free)

f̂ :=
η1

(η2 + u)γ
∇u. (1.56)
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Basic model

The basic model has been motivated by the cell movements as biased random
walks of each cells. In the one-dimensional case, let h be the constant jump
length of a cell to the left x−h or right x+h. We also assume that cells do not
interact with each other. Then the discrete evolution of the particle density
u(x, t) at position x can be defined as

∂tu(x, t) = p+
x−hu(x− h, t) + p−x+hu(x+ h, t)−

(
p+
x + p−x

)
u(x, t) (1.57)

with probability
p±x = (a+ b (φ (x± h, t)− φ (x, t))) , (1.58)

where p±x is the probability of a cell at x to jump to x ± h. With these proba-
bilities we can model a variety of chemotaxis models.

We propose that the cell jump is biased according to a local gradient of the
chemical φ.
Plugging the probabilities (1.58) into (1.57) and using a Taylor expansion we
obtain

∂tu(x, t) = λh2∂x (au∂xu(x, t)− 2bu(x, t)∂xφ(x, t)) +O(h4). (1.59)

If we further assume the existence of the limits

lim
h→0,λ→∞

aλh2 = Du,

lim
h→0,λ→∞

2bλh2 = k
(1.60)

with time scaling τ = λt, we re-obtain the partial differential equation (1.50)

∂tu(x, t) = ∂x (Du∂xu(x, t))− ∂x (ku∂xφ (x, t)) . (1.61)

For the multidimensional case, the derivation is straightforward and follows
the same steps such that

∂tu(x, t) = ∇ · (Du∇u(x, t)− ku(x, t)∇φ (x, t)) . (1.62)

We remark that the diffusion D is not necessarily a constant but can also be
a time and space dependant function. An example for such diffusion can be
found in multiphase porous media flow models [91].
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Signal-dependent sensitivity models

It has been shown in Tweedy [140] that the ability of cells to externally detect
the chemical φ (i.e signal) through the binding of φ to receptors located at the
cell’s surfaces.
The reception of signals then leads to a movement response which we have
expressed in the basic model before as

χ = k (1.63)

with rate of convection parameter k ∈ R.
This model gets extended by including a signal-saturation effect.
At high concentrations of φ, the receptors might become fully occupied and
no further detection of the chemical gradient ∇φ is possible.
According to [116] let C be a single molecule of the chemical φ and Rfree a
free cell receptor and, resp. Rfull an occupied cell receptor with
Rtotal = Rfull+Rfree = const. The chemical reaction equation is then describes
as

r1

Rfree + V � Rfull

r−1

(1.64)

with reaction rates r1, r−1 > 0. The chemical reaction equation can then be
solved which leads to the receptor-saturation model with

χ (φ) =
k1

(k2 + φ)2 , (1.65)

where k2 depends on both the reaction rates r1, r2 and the concentration of
receptors.
The receptor-saturation model have found application in many chemotaxis
models [52, 87, 126] and more detailed versions can be found in the literature
that include other forms of signal-sensitivity dependencies [18, 129].

Density-dependent sensitivity model

The overcrowding model (1.54) is actually a combination of the receptor
saturation model (1.53) with an additional factor contributed to a density-
dependent effect, introduced in [71].
Assuming that cells are nonzero space-filling objects, they occupy the area
they are positioned at, limiting the movement of other cells, we can use the
random walk equation (1.57) and extend the jump probability p±x (1.58) with
the function q(u) to

p±x = q(u (x± h)) (a+ b (φ (x± h, t)− φ (x, t))) . (1.66)
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Here the function q (u (x± h)) describes the probability of finding space which
depends on the density of cells in that position.
Using Taylor expansion as in the derivation of the basic models, leads to the
following convection-diffusion equation for cell density u

∂tu = ∇ · (D (q(u)− u∂uq(u))∇u− kuq(u)∇φ) . (1.67)

A prototypical function for q would be

q (u) = 1− u

umax
(1.68)

with umax as the maximum cell density, which leads to the general overcrowd-
ing model (without receptor saturation)

χ (u) = k

(
1− u

umax

)
, (1.69)

which can be easily extended to the overcrowding model (1.54) by replacing
k with the receptor-saturation (1.65).

These models have been studied in [70] where global existence of solutions
and other properties have been shown.

Most chemotaxis models in the literature assume the diffusion coefficient D
as constant, but nonconstant diffusion coefficient can be found in the litera-
ture such as [72] for example where the effect of cell-cell adhesion is investi-
gated which belong to the class of non-linear diffusion models.

The interaction model (1.55) as described in [49] is the extension of the
receptor-saturation model (1.53) with an additional term that takes into ac-
count that the migration of cells might be affected by attraction or repulsion
among themselves through other chemicals released by the cells

η1

1 + η2u
∇u (1.70)

with parameter η1 ∈ R and η2 > 0.
This interaction model motivates the chemoattractant free interaction model
(1.56), a modification of the proposed model in [49], where the cells directly
migrate towards their own concentration gradient.
This model makes the chemical φ obsolete since it does not influence the mi-
gration of cells u anymore.

Any of the presented models can be extended and further modified to include
more assumptions and possible mechanics of the chemotactic movement of
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Figure 1.11: Flow chart of chemotaxis model (1.45) for different chemotactic terms with
the number of model parameters for cell density u and chemoattractant concentration φ.
Start of the model is the pure diffusion equation for both quantities without chemotactic
term. Following the flow chart increases the complexity of the chemotactic term and hence
increases the number of model parameters. A model with redundant terms (redundant model
parameters) can lead to overfitting of the model and a too simplified model to an underfitting.
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cells but we restrict ourselves with the presented ones.

With this we conclude the modelling part where we discussed the various
models of partial differential equations and boundary and transmission con-
ditions. Although local in time solutions and under certain conditions global
solutions exist for these well-posed problems, an analytical solution can be
very difficult to find [117]. For this reason we must find approximations to
the solutions. The theory to accomplish this will be discussed in the next
chapter.
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Chapter 2

Numerical Backgrounds

In this chapter we want to provide numerical background about the numeri-
cal approximation of hyperbolic-parabolic partial differential equations such
as the Keller-Segel model which we described in the previous chapter and is
used later for the proper numerical approximation of the mathematical model
of the Organ-on-Chip with transmission conditions.
We begin by introducing the concept of finite difference schemes and define
important concepts such as consistency, stability, order and convergence and
use these to present some finite difference schemes for prototypical equa-
tions.
The main references of this chapter are taken from [88, 102, 134].

2.1 Introduction to Finite Difference Schemes

We focus our studies on the following homogeneous partial differential equa-
tions of different types:

• Advection equation (hyperbolic)

∂tu+ c∂xu = 0 (2.1)

• Diffusion equation (parabolic)

∂tu−D∂xxu = 0 (2.2)

• Convection-Diffusion equation (parabolic)

∂tu+ c∂xu−D∂xxu = 0. (2.3)

We start with a grid in the (t, x)-plane.
For the domain Ω ⊂ R and for the time domain 0 ≤ t ≤ T we define eq-
uispaced points xi := i4x, tn := n4t with 4x,4t > 0 and JΩ := {i} with



Introduction to Finite Difference Schemes

i = 0, . . . , N + 1 and T := {n} with n = 0, . . . ,M + 1. For a continuous func-
tion u (tn, xi) on the grid we define its discretization vector as v = {vni } with
u(tn, xi) ≈ vni .

For later use we also define two of the most common used discrete norms
which are the l∞-norm

‖ vn ‖4x,∞= max
i∈JΩ

{|vni |} (2.4)

and the l2-norm

‖ vn ‖4x,2=

(
4x

∑
i∈JΩ

|vni |2
) 1

2

. (2.5)

The essential idea behind finite difference schemes is to approximate the
derivatives of a partial differential equation by finite differences such like

• Forward difference

δ1u (tn, xi) =
uni+1 − uni
4x

+O (4x) (2.6)

• Backward difference

δ−1u (tn, xi) =
uni − uni−1

4x
+O (4x) (2.7)

• Central difference

δ0u (tn, xi) =
uni+1 − uni−1

24x
+O

(
4x2

)
(2.8)

for first derivatives, and higher order differences such as

• Central difference

δ2
0u (tn, xi) =

ui+1 − 2ui + ui−1

4x2
+O

(
4x2

)
, (2.9)

which all can be derived by means of Taylor expansion but also in many other
ways as well (see [53]).
Before we proceed we consider now a more general linear partial differential
equation of the form{

P (∂t, ∂x)u (t, x) = f (t, x) , for x ∈ R, t ≤ 0

u(0, x) = u0(x), for x ∈ R (2.10)

with P being a linear operator and first order in the derivative with respect
to time t. The previously introduced partial differential equations (2.1), (2.2)
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and (2.3) are such examples.
To create a finite difference scheme for any of those equations, we can re-
place the derivatives with one of the introduced finite differences. These
schemes can be generalized by the algebraic system

P4t,4xv
n
i = 0, (2.11)

where P4t,4x is the difference operator.
A general form of a one-step finite difference method can be written as

L(S+, S−)vn+1 = Q(S+, S−)vn (2.12)

with polynomial L and Q in S+, S− with S±vi = vi±1.
This can be also written in ∑

i∈IΩ

div
n+1
i =

∑
i∈IΩ

civ
n
i , (2.13)

with coefficents ci, di ∈ R.
Examples of such finite difference schemes for the advection equation (2.1)
are

• Upwind for c > 0

vn+1
i = vni − c

4t
4x

(
vni − vni−1

)
(2.14)

• Upwind for c < 0

vn+1
i = vni − c

4t
4x

(
vni+1 − vni

)
(2.15)

• FTCS (forward in time, central in space)

vn+1
i = vni − c

4t
24x

(
vni+1 − vni−1

)
(2.16)

• Lax-Friedrich

vn+1
i =

vni+1 + vni−1

2
− c 4t

24x
(
vni+1 − vni−1

)
(2.17)

• BTCS (backward in time, central in space)

vn+1
i = vni − c

4t
24x

(
vn+1
i+1 − vn+1

i−1

)
(2.18)

• Leapfrog (multistep method)

vn+1
i = vn−1

i − c4t
4x

(
vni+1 − vni−1

)
. (2.19)
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These finite difference schemes (2.14) to (2.16), except for the last two, can
be summarized to the class of explicit three point schemes of the form

vn+1
i = αvni+1 + βvni + γvni−1 (2.20)

with α, β, γ ∈ R, whereas the BCTS scheme (2.18) is an implicit scheme which
involves solving a linear equation system for each time iteration n + 1. If the
partial differential equation has non-linear terms, then solving a non-linear
equation would be required.
In Section 4 we will explain in more detail how to solve them.
The leapfrog method is a so called multistep method which, besides tn, also
requires previous time iterations tn−1 in order to calculate the n+ 1 iteration
for tn+1. Multistep methods involve an initialization phase as well, because in
order to calculate the first iteration for t2, not only the initial data for t0 are
needed but also an additional at t1. Often the initialization is done by a one
step scheme with the same order as the multistep scheme to obtain values
for t1. In this work we restrict ourselves with one step methods only and refer
to [102, 134] for more information.

For the parabolic diffusion equation (2.2) we have the following standard
finite difference schemes

• FTCS (Diffusion)

vn+1
i = vni +D

4t
4x2

(
vni+1 − 2vni + vni−1

)
(2.21)

• BTCS (Diffusion)

vn+1
i = vni +D

4t
4x2

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

)
(2.22)

• Crank-Nicolson scheme

vn+1
i = vni +D

4t
24x2

((
vni+1 − 2vni + vni−1

)
+
(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

))
, (2.23)

which can also be generalized to the θ-scheme

vn+1
i = vni +D

4t
4x2

[
(1− θ)

(
vni+1 − 2vni + vni−1

)
+ θ

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

))
(2.24)

for θ ∈ [0, 1].
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2.2 Consistency and Convergence

In order to establish the connection between the partial differential equa-
tion (2.10) and the finite difference scheme (2.11) we can use the following
definition.

Definition 2.2.1 (Convergence). A one-step finite difference scheme (2.11)
approximating a partial differential equation (2.10) is convergent if for any
solution to the partial differential equation, u(t, x), with appropriate initial
and boundary value, and solutions to the finite difference scheme, vni , such
that v0

i converges to u0(x) as i4x converges to x, then vni converges to u(t, x)

as (n4t, i4x) converges to (t, x) as 4t,4x −→ 0.

A scheme that fulfils definition 2.2.1 is called a convergent scheme and such
schemes are being used in numerical computations.
An equivalent definition of convergence is that we call a scheme convergent
in the discrete norm ‖ · ‖4x,· if

‖ vn − un ‖·,4x→ 0, for 4t→ 0 and n4t→ t ∈ (0, T ), (2.25)

for all initial value u(0, x) = u0 such that the corresponding partial differential
equation is well-posed.
Another important concept of finite difference schemes is consistency.

Definition 2.2.2 (Consistency). Given a partial differential equation, Pu =

f and a finite difference scheme P4t,4xv = f , we say that the finite difference
scheme is consistent with the partial differential equation if for any smooth
function φ (t, x)

Pφ− P4t,4xφ→ 0 as 4t,4x→ 0 (2.26)

the convergences being pointwise at each point (t, x).

We can apply this definition in the proof of the following proposition.

Proposition 2.2.3. Let 4t4x be fixed as λx := 4t
4x with constant λx > 0. Then

the three-point finite difference scheme (2.20) is consistent with the advec-
tion equation (2.1) iff α + β + γ = 1 and γ − α = λxa.

Proof: For the three point scheme (2.20)

vn+1
i = αvni+1 + βvni + γvni−1 (2.27)

we make a Taylor expansion to obtain at (tn, xi)

u (tn+1, xi) = u(tn, xi) +4t∂tu(tn, xi) + 4t2
2
∂ttu(tn, xi) +O(4t3)

u (tn, xi+1) = u(tn, xi) +4x∂xu(tn, xi) + 4x2

2
∂xxu(tn, xi) +O(4x3)

u (tn, xi−1) = u(tn, xi)−4x∂xu(tn, xi) + 4x2

2
∂xxu(tn, xi) +O(4x3).

(2.28)
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Replacing the values in (2.20) with (2.28), we get

u+4t∂tu+ 4t2
2
∂ttu = (α + β + γ)u+4x (α− γ) ∂xu

+4x
2

2
(α + γ) ∂xxu

+O(4t3) +O(4x3)

⇐⇒ ∂tu = (α + β + γ − 1)u− 1
λx

(γ − α) ∂xu

+4x
2

24t (α + γ) ∂xxu− 4t2
∂ttu

+O(4t2) +O(4x2).

(2.29)

Since consistency requires two linear constraints for the parameters α, β, γ of
the three point scheme (2.20), we only have one degree of freedom. Setting
q = α + γ we can write the explicit three point schemes in the so called
viscous form

vn+1
i = vni −

cλx
2

(
vni+1 − vni−1

)
+
q

2

(
vni+1 − 2vni + vni−1

)
(2.30)

with artificial viscosity q
2
. The smaller q, the smaller the dissipation of the

numerical solution is. In table 2.1 the finite difference schemes are listed
with their respective coefficients.
Consistency implies that the solution of the partial differential equation is
an approximate solution of the finite difference scheme, if it is smooth. In
the same manner, convergence means that a solution of the finite difference
scheme approximates a solution of the partial differential equation. However
consistency is necessary but not sufficient for convergence.
For that we need another condition which is the stability of a finite difference
scheme.

2.3 Stability

Before giving the definition of stability, we need to define the stability region.
For most of the finite difference schemes, there are certain restrictions for
4t and 4x such that the scheme is stable. Hence a stability region must
contain a sequence (4tp,4xp) such that it converges to the origin as p→∞.

Definition 2.3.1. Stability A one-step finite difference scheme P4t,4xuni = 0

for the first order equation (2.10) is stable in the norm ‖ · ‖·,4x in a stability
region Ω if for every T > 0 there exists a constant CT such that, for each u0,

‖ un ‖·,4x≤ CT ‖ u0 ‖·,4x, (2.31)

for 0 ≤ n4t ≤ T .
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scheme (α, β, γ) q Convergence Order

upwind (c<0) (−cλx, 1 + cλx, 0) −cλx −1 ≤ cλx ≤ 0 (1,1)
upwind (c>0) (0, 1− cλx, cλx) λxc 0 ≤ cλx ≤ 1 (1,1)

FTCS (−cλx
2
, 1, cλx

2
) 0 unstable (-,-)

Lax-Friedrich (1−cλx
2

, 0, 1+cλx
2

) 1 |cλx| ≤ 1 (1,1)

Lax-Wendroff ( cλx+c2λ2
x

2
, 1− c2λ2

x, (
−cλx+c2λ2

x

2
) c2λ2

x |cλx| ≤ 1(l2 − stable) (2,2)

Table 2.1: Three point schemes (2.20) for the advection equation (2.1).

scheme θ Convergence Order

FTCS 0 Dµx ≤ 1
2

(1,2)
BTCS 1 unconditonally stable (1,2)

Crank-Nicolson 1
2

unconditionally stable in l2-norm
Dµx ≤ 1 in l∞-norm

(2,2)

Table 2.2: θ-scheme (2.24) for the diffusion equation (2.2) for µx = 4t
4x2 .

Now we have defined the concept of stability, consistency and convergence.
The connection of these three concepts can be seen in the Lax-Richtmeyer
equivalence theorem, which is a fundamental theorem in the theory of finite
difference schemes for initial value problems.

Theorem 2.3.2. (Lax-Richtmeyer) A consistent finite difference scheme for
a linear partial differential equation for which the initial value problem is
well-posed is convergent iff it is stable.

Proof: See [134].

This theorem proves to be very useful in determining whether a finite dif-
ference scheme is convergent by avoiding the difficult proof of convergent
itself, but proving consistency and stability instead, which is much easier to
do.
In the next section we will introduce procedures how to prove stability in an
easier way.

2.3.1 L∞ Stability and Monotonicity

One way to prove stability is by finding estimates in the maximum norm,
which can be done by verifying that the monotone comparison property holds
[102]. This means that if two discretized initial data v0

i , ṽ
0
i are such that v0

i ≤
ṽ0
i , then for all n > 0 the inequality vni ≤ ṽni holds.
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Definition 2.3.3. A one step scheme of the form (2.13) is monotone if for all
coefficients

ci ≥ 0. (2.32)

Theorem 2.3.4. Let a monotone scheme in the form (2.13) be given. Then,
setting

vmin := min{v0
i }, vmax := max{v0

i } (2.33)

we have
vmin ≤ vni ≤ vmax, for all i and n. (2.34)

Proposition 2.3.5. The explicit three-point scheme in viscous form (2.30),
which is consistent to the advection equation (2.1) is monotone iff

c|λx| ≤ q ≤ 1. (2.35)

Proof: We sort the coefficients ci of (2.30) accordingly and require ci ≤ 0.

vn+1
i = (1− q) vni +

(
−cλx

2
+
q

2

)
vni+1 +

(
cλx
2

+
q

2

)
vni−1. (2.36)

By checking the inequality of each coefficient we get the monotone conditions
q ≤ 1 and q ≥ c|λx|.

In the same way we can derive monotone conditions for the θ-scheme (2.24)
for the diffusion equation (2.2) with µx = 4t

4x2

(1 + 2Dµxθ)v
n+1
i −Dµxθvn+1

i−1 −Dµxθvn+1
i+1 = (1− 2Dµx(1− θ)) vni

+Dµx(1− θ)vni+1 +Dµx(1− θ)vni−1

(2.37)
and by requiring the coefficients of vni , v

n
i+1, v

n
i−1 to be positive we get as a

condition for monotonicity

Dµx(1− θ) ≤
1

2
. (2.38)

The stability conditions can be found in table 2.2.
Schemes that are monotone and consistent are, according to the Lax-Richtmeyer
theorem 2.3.2, convergent.
In the next section we will investigate stability in the l2-norm with the help of
Fourier analysis.
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2.4 Von Neumann Stability Analysis

With the help of Fourier analysis we will introduce a very powerful tool to
study and analyse partial differential equations and finite difference schemes
with which the Von Neumann analysis of stability is derived to give necessary
and sufficient stability conditions for the stability of finite difference schemes
in a generally more applicable way.
We will refer to [102, 134] for a more detailed explanation on Fourier anal-
ysis and will just mention the Parseval’s relations theorem on which the Von
Neumann analysis is based on.

Theorem 2.4.1 (Parseval’s relations). Let u(x) ∈ C1 and be û(ω) its Fourier
transform, then with the L2-norm the equality

‖ u ‖2=‖ û ‖2 (2.39)

and for grid function v and its discrete Fourier transform the equality

‖ v ‖2
4x=‖ v̂ ‖2

4x (2.40)

hold.

With Parseval’s relations we can replace the equation of the stability defini-
tion 2.3.1 with the equivalent inequality in its Fourier transform

‖ v̂n ‖4x≤ C∗T

J∑
j=0

‖ v̂j ‖4x . (2.41)

It is worth mentioning that the Parseval relation is not valid in the l∞-norm.
With this powerful tool we can now introduce the von Neumann analysis of
stability of finite difference schemes which is an important application of the
Fourier analysis.

We will generically show the method on the upwind scheme (2.14) for the
advection equation (2.1) with λx = 4t

4x and c > 0.
For the Upwind scheme

vn+1
m = (1− cλx) vnm + cλxv

n
m−1 (2.42)

we substitute vn+1
m , vnm+1, v

n
m−1 with their discrete Fourier inversion [134] and

obtain

1

2π

∫ π
4x

− π
4x

eim4xξv̂n+1(ξ)dξ =
1

2π

∫ π
4x

− π
4x

eim4xξ
[
(1− cλx) + cλxe

−i4xξ] v̂n(ξ)dξ.

(2.43)
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By comparing both terms in the integral (2.43) pointwise, we get

v̂n+1(ξ) = g(4xξ)v̂n(ξ) (2.44)

with amplification factor g(4xξ) = (1− cλx) + cλxe
−i4xξ and thus

v̂n+1 = gn+1(4xξ)v̂0, (2.45)

which shows that advancing the solution by n+1 time steps is equivalent with
multiplying the Fourier transform of the solution by the amplification factor.
If we use (2.44) on the definition of stability 2.3.1 with the Parseval’s relations
(2.4.1) we reveal

‖ vn ‖2
4x,2 =

∫ π
4x

− π
4x

|v̂n|2(ξ)dξ

=

∫ π
4x

− π
4x

|g(4xξ)|2n|v̂0(ξ)|2dξ
(2.46)

and the stability inequality (2.31) holds if |g(4xξ)|2n is suitably bounded.
For the amplification factor g(θ) with θ = 4xξ of the upwind scheme we have

|g(θ)|2 = | (1− cλx) + cλxe
−iθ|2

=
(
1− 2cλx sin2( θ

2
)
)2

+ 4c2λ2
x sin2( θ

2
) cos2( θ

2
)

= 1− 4cλx (1− 4cλx) sin2( θ
2
)

⇒ |g(θ)|2 ≤ 1 for 0 ≤ cλx ≤ 1.

(2.47)

A simpler and equivalent procedure is to substitute vnm in the finite difference
scheme with gneimθ = vnm to obtain the amplification factor.

Although we derived a stability criteria for just the upwind scheme, we can
generalize the results in the following theorem.

Theorem 2.4.2. A one-step finite difference scheme with constant coeffi-
cients is stable in a stability region Λ iff there is a constant K, independent of
θ,4t and 4x, such that

|g (θ,4t,4x) | ≤ 1 +K4t (2.48)

with (4t,4x) ∈ Λ. If g (θ,4t,4x) is independent of 4t and 4x, the stability
criteria (2.48) can be replaced with the restricted stability condition

|g(θ)| ≤ 1. (2.49)
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Theorem 2.4.2 gives us a simple but powerful tool to analyze stability in l2-
norm of one step finite difference methods by only investigating the respec-
tive amplification factor g(θ).

Stability conditions derived with the Von Neumann analysis for other finite
difference schemes are indicated in table 2.1 and 2.2.

Remark 2.4.3. We want to point out that stability derived from the verifi-
cation of the monotonicity condition 2.3.3 is often more restrictive than in
l2-norm which can be seen for the Crank-Nicolson-scheme (2.23), consistent
to the diffusion equation (2.2). Applying the Von Neumann stability analysis
tells us that the scheme is unconditionally stable in l2-norm, whereas with
the monotonicity condition we have the stability restriction Dµx ≤ 1.

The question whether something changes when viewing schemes for inho-
mogeneous linear partial differential equations can be answered with the
following corollary.

Corollary 2.4.3.1. If a scheme is modified so that the modifications result
only in the addition to the amplification factor of terms that are O(4t) uni-
formly in ξ, then the modified scheme is stable iff the original scheme is
stable.

The corollary states that for stability the lower order terms such as function
f does not influence the stability condition and hence only the finite differ-
ence scheme for homogeneous hyperbolic partial differential equations are
needed to be analysed.

Remark 2.4.4. The stability condition in theorem 2.4.2 does not apply di-
rectly to linear partial differential equations with variable coefficients, but
we can still use the stability condition by considering each of the frozen coef-
ficient problems. These are constant coefficient problems obtained by fixing
the coefficients at their values at each point of the domain of the computa-
tion. If each of those frozen coefficient problems is stable, then the variable
coefficient problem is stable as well [134].

Although the Von Neumann stability analysis can give us necessary and suf-
ficient stability conditions for initial value problems of linear partial differen-
tial equations. It is strictly only valid for the scheme excluding boundary con-
ditions due to the nature of Fourier Analysis. However these conditions are
often only necessary conditions for non-linearities and complicated boundary
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conditions. Here the Von Neumann stability analysis may only be applied lo-
cally on linearised equations.

We have now established several strategy to derive necessary and sufficient
stability conditions with the monotonicity condition in 2.3.3 and with the Von
Neumann stability analysis.
We refer to Section 2.8 where we briefly discuss the theories to check explic-
itly the stability of boundary conditions and the matrix method which is an al-
ternative approach to derive stability conditions for finite difference schemes
with boundary conditions.

2.5 Order of Accuracy

In the previous sections we have introduced the concepts of consistency, con-
vergence and stability, but left out the concept of order of accuracy which
gives us information about the accuracy of finite difference schemes. We will
focus about it in this section.

Definition 2.5.1 (Order). A scheme P4t,4xv = R4t,4xf that is consistent
with the partial differential equation Pu = f is accurate of order p in time
and order q in space, if for any smooth function φ(t, x),

P4t,4xφ−R4t,4xPφ = O(4tp) +O(4xq). (2.50)

We say that such a scheme is accurate of order (p, q).
The quantity T (t, x) := P4t,4xφ(t, x)− R4t,4xPφ(t, x) is called truncation er-
ror of the scheme.

Because in not every scheme 4t and 4x are independent from each other,
we give a more general definition of order which takes into account the time
step as a smooth function of the space step 4t = Λ(4x).

Definition 2.5.2 (Order). A scheme P4t,4xv = R4t,4xf with4t = Λ(4x) that
is consistent with he differential equation Pu = f is accurate of order r, if for
any smooth function φ(t, x),

P4t,4xφ−R4t,4xPφ = O(4tr). (2.51)

It is important to note that in the definition of consistency 2.2.2 the trun-
cation error only requires to be T (x, t) = o (1) whereas the definition of or-
der 2.51 the more specific definition of the truncation error with T (x, t) =

O (4tp) +O (4xq).
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As an example, we will inspect the order of the three point scheme (2.20)
for the advection equation (2.1).
We can use the truncation error and the Taylor expansion from (2.28) with
the conditions of proposition (2.2.3) to obtain

T (tn, xi) = 4x2

24t q∂xxu−
4t
2
∂ttu+O(4t2) +O(4x2). (2.52)

Now we can use the advection equation (2.1) itself to derive the second time
derivative of u

∂ttu = −c∂t∂xu

∂ttu = c2∂xxu
(2.53)

and substituting (2.53) into the truncation error (2.52) leads to

T (tn, xi) =

(
4x2

24t
q − c24t

2

)
∂xxu+O(4t2) +O(4x2). (2.54)

If we fix λx := 4t
4x we notice that the three point schemes are of order 1 in

time and space and only for q = (λxc)
2 the scheme is order 2 in time and

space. This scheme is the Lax-Wendroff scheme.

Also the choice of the linear operator R4t,4x for the discretization of the func-
tion f affects the order of the scheme as well.
As an example we take the Lax-Wendroff method

vn+1
i = vni − cλx

2

(
vni+1 − vni

)
+ c2λ2

x

2

(
vni+1 − 2vni + vni−1

)
+4tR4t,4xfni (2.55)

applied to the inhomogeneous advection equation

∂tu+ c∂xu = f (2.56)

with a consistent linear operatorR4t,4x such thatR4t,4xfni → fni for4t,4x→
0.

We will demonstrate this on the following two consistent linear operators:

(i) R4t,4xfni = 1
2

(
fn+1
i + fni

)
− cλx

4

(
fni+1 − fni−1

)
.

(ii) R4t,4xfni = fni .

We use the Taylor expansion on

P4t,4xφ =
φn+1
i − φni
4t

+ c
φni+1 − φni−1

24x
− c2λ2

x

2

φni+1 − 2φni + φni−1

4x2
(2.57)

evaluated at (tn, xi)

P4t,4xφ = ∂tφ+
4t
2
∂ttφ+ c∂xφ−

c2λ2
x

2
∂xxφ+O(4t2) +O(4x2) (2.58)
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and for (i) with f = ∂tφ+ c∂xφ = Pφ

R4t,4xf = f +
4t
2
∂tf −

c4x
2

∂xf +O(4t2) +O(4x2) (2.59)

R4t,4xPφ = ∂tφ+ c∂xφ+ 4t
2
∂ttφ− c24t2

2
∂xxφ+O(4t2) +O(4x2). (2.60)

This means for the truncation error T (t, x) = P4t,4xφ− R4t,4xPφ = O(4t2) +

O(4x2) and hence the Lax-Wendroff scheme is of order (2, 2).
If we choose for R4t,4xf (ii) instead, we would get

R4t,4xf = f = ∂tφ+ c∂xφ (2.61)

and for the truncation error T (t, x) = P4t,4xφ− R4t,4xPφ = O(4t) +O(4x2).
Hence the method would be of order (1, 2).

We want to mention also that for non-smooth initial conditions additional
criteria must be fulfilled in order for the scheme to preserve its order of ac-
curacy, otherwise an order reduction can occur. We refer to [134] for further
details on this topic.

2.6 Convection-Diffusion Equation

In the previous sections we have introduced the concepts of consistency, sta-
bility, order of accuracy and convergence and applied these on finite differ-
ence schemes for the diffusion and advection equation.
This section is devoted to give a through insight into the convection-diffusion
equations

∂tu+ c∂xu = D∂xxu.

These types of partial differential equations are a combination of a hyperbolic
term (convection) and a parabolic term (diffusion) and are the foundation of
the mathematical model we use to simulate chemotaxis, such as the Keller-
Segel model (1.31).

It is straightforward to use finite difference scheme (2.30) for the convection
part of the equation and a central discretization for the second order deriva-
tive in space.
We set µx := 4t

4x2 and λx := 4t
4x and have the finite difference scheme

vn+1
i = vi +

[
Dµx +

q

2

] (
vni+1 − 2vni + vni−1

)
− cλx

2

(
vni+1 − vni−1

)
(2.62)
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with artificial viscosity parameter q ∈ R.
Although we could use the Von Neumann stability analysis, we take advan-
tage of the monotonicity property of the convection-diffusion equations and
use the criteria for monotonicity in 2.3.3 to show stability in the l∞-norm.

We recall that the main property of parabolic partial differential equation is
that for the solution u(x, t)

sup
x∈Ω
|u(x, t)| ≤ sup

x∈Ω
|u(x, t′)| for t > t′. (2.63)

If we want the numerical solutions of the finite difference scheme to have
similar properties, we want the condition

max
i∈JΩ

|vn+1
i | ≤ max

i∈JΩ

|vni | (2.64)

to be fulfilled.
With the help of the monotonicity conditions we organize the factors of
vni , v

n
i+1, v

n
i−1 and acquire the conditions

1− 2Dµx − q ≥ 0,

Dµx + q
2
± cλx

2
≥ 0,

(2.65)

which leads to the conditions

µx ≤ 1−q
2D
,

4x ≤ 2D
c

+ q
cλx
.

(2.66)

As expected, the first condition of (2.66) gives us the stability criterion for
that scheme that restricts the time step size 4t in dependence on the mesh
grid size 4x with the diffusion coefficient D.
The second condition of (2.66) on the other hand is not a stability condition
since stability only deals with the limit when 4t and 4x tend to zero. It is
only restricting the mesh grid size4x and is always fulfilled for small enough
4x.
If this condition is violated, oscillations will occur which are only the result
of inappropriate mesh grid resolution.
In table 2.3 we have listed several explicit finite difference schemes with their
respective stability condition.

Remark 2.6.1. The quantity cL
D

with characteristic length L corresponds to
the Reynold number in fluid dynamics or the Peclet number in heat flow.
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scheme q Stability condition Order

upwind(c>0) λxc µx ≤ 1
2D+c4x (1,1)

FTCS 0
µx ≤ 1

2D

4x ≤ 2D
c

(1,2)

Lax-Friedrich 1 unstable (-,-)

Crank-Nicolson-CS(IMEX) 0
µx ≤ 1

D

4x ≤ 2D
c

(1,2)

Table 2.3: Explicit finite difference schemes (2.62) for the convection-
diffusion equation (2.3).

We can see from table 2.3 that the stability restriction are rather harsh for
convection dominant equations. For the FTCS-scheme a high Peclet number
would enforce very small mesh grid size to avoid oscillations and therefore
even smaller time step size to ensure the stability of the scheme.
A remedy can be achieved by discretizing the first order term c∂xu with an
upwind method which stability restriction becomes less restrictive for larger
Peclet numbers compared to the FTCS-schemes.
We can also observe that the introduction of artificial viscosity can greatly
loosen the restrictions on the time step 4t and mesh grid size 4x.
This will enable us to have an efficient and less costly implementation of
the chemotaxis model (1.45) where we deal with highly convection dominant
equations.

2.7 IMEX-Schemes

The previously discussed finite difference schemes are divided into groups of
explicit methods, where only the current vector vn is needed for the calcula-
tion of the next time iteration vn+1. These methods are never unconditionally
stable and certain stability restrictions need to be enforced [102].
The other group of methods are implicit methods, where beside the current
vector vn also vn+1 are needed for the calculation of vn+1. This requires solv-
ing a linear equation system if all terms are linear but for non-linear terms,
a nonlinear equation system must be solved. How to solve those systems will
be discussed later in Chapter 4.
The advantage of avoiding very restrictive stability conditions is tied to the
disadvantage of high computational cost of solving such equation systems.
The idea is to use a different discretization methods on different terms of
the partial differential equations. This gives rise to Implicit-Explicit schemes
(IMEX) [9]. An example is a convection diffusion equation with non-linear
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convection term ∂x (f(u)) where an implicit discretization is used on the lin-
ear diffusion term and an explicit discretization on the non-linear convection
term.
This would allow us to improve the stability restriction by solving a linear
equation system in each time iteration step but avoid solving a non-linear
equation system.

In order to appropriately define IMEX-methods, we extend the definition of
finite difference schemes and introduce the Method of Lines [84, 123], which
is the discretization in all but one dimension.
The method of lines dates back to at least the early 60’s. Many papers dis-
cussing the accuracy and stability of the method of lines for various types of
partial differential equations have appeared since [33, 81, 89].
If we take the general first order in time partial differential equation ∂tu(t, x) = P (∂x)u(t, x), for x ∈ Ω, t ≥ 0,

u(0, x) = u0(x), for x ∈ Ω
(2.67)

and only discretize the spatial dimension, we get the ordinary differential
equation system 

d
dt
ui(t) = P4xui(t), for t > 0,

u(0)i = u0(xi)
(2.68)

with i ∈ JΩ and appropriate linear operator P4x for the spatial discretization,
on which we can apply methods to numerically solve such equations (Runge-
Kutta-Methods, BDF-Methods and others) [32, 121, 135].
The MOL-methods do require that the partial differential equation is a well-
posed initial value problem because the numerical integrators for ordinary
differential equation are initial value problem solvers.
The finite difference methods in the preceding sections can be identified as
MOL methods. For an initial value ordinary differential equation

du(t)
dt

= F (t, u(t)),

u(0) = u0

(2.69)

the following examples are one-step methods for the approximated solution

• Explicit Euler method

un+1 = un +4tF (tn, u(tn)) (2.70)

• Implicit Euler method

un+1 = un +4tF (tn+1, u(tn+1) (2.71)
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• Classical Runge-Kutta (explicit)

un+1 = un + 1
6

(k1 + 2k2 + 2k3 + k4) ,

k1 = F (tn, u
n),

k2 = F (tn + 4t
2
, un +4tk1

2
),

k3 = F (tn + 4t
2
, un +4tk2

2
),

k4 = f(tn +4t, un +4tk3)

(2.72)

• Trapezoidal rule (implicit)

un+1 = un +
4t
2

(
F (tn, u

n) + F (tn+1, u
n+1)

)
. (2.73)

There is a rich literature presenting concepts such as A-,B- and L-stability,
order of accuracy and the derivation of other one step and multi step meth-
ods which can be found in [32, 39, 66, 121, 135, 144].
Applying one step methods on the ordinary differential equation (2.68), we
recover the previously derived finite difference schemes.
We can confirm that for the forward in time finite difference methods the first
order explicit Euler method (2.70) have been used, whereas for the backward
in time finite difference schemes the first order implicit Euler method (2.71)
has been applied.
Even the Crank-Nicolson method for the diffusion equation (2.23) can be de-
rived by using the second order trapezoidal rule (2.73).
The main idea behind IMEX-schemes is to divide the ordinary differential
equation (2.69) into two parts

d

dt
ui(t) = F (ui(t))︸ ︷︷ ︸

non stiff, non-linear

+ G(ui(t)),︸ ︷︷ ︸
stiff and linear

(2.74)

on which we use an explicit one step method on function F and an implicit
one step method on G.
Usually the function F contains the non-linear terms of the partial differential
equations which would be very difficult to solve numerically, especially when
non-linear, whereas the function G contains stiff linear terms of the partial
differential equation, which require solving a much easier linear equation.
With the θ-scheme (2.24) we already have seen an IMEX-method with

du(t)

dt
= θP4xu︸ ︷︷ ︸

explicit Euler method

+ (1− θ)P4xu︸ ︷︷ ︸
implicit Euler

(2.75)
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and the advantage achieved was by choosing θ = 1
2

which increased the ap-
proximation order in time to 2 and benefit from unconditional stability for the
diffusion equation (2.2).
Also in Section 2.6 in table 2.3 we already listed an IMEX method for the
convection-diffusion equation (2.3). For

∂tu(t, x) = D∂xxu(t, x)︸ ︷︷ ︸
spatial discretization with F

− c∂cu(t, x)︸ ︷︷ ︸
spatial discretization with G

(2.76)

we attain
du

dt
=

1

2
F (u)︸ ︷︷ ︸

explicit Euler

+
1

2
F (u)︸ ︷︷ ︸

implicit Euler

+ G(u)︸ ︷︷ ︸
explicit Euler

. (2.77)

If we compare the order of accuracy and stability condition in table 2.3 we do
not notice an increase in the order in time and just a marginally better sta-
bility condition which raises the question why an implicit method is applied
in the first place.
The answer lies within the spatial discretization of the diffusion term, which
leads to a so called stiff term.
Stiff terms dictate the time step size due to stability constraints which re-
quires the usage of implicit methods.
Using the Crank-Nicolson scheme also on the non-linear convection term
∂x (f(u)) would increase the order in time to 2, but makes it necessary to
not solve just a linear equation system which can be calculated efficiently,
but also to solve a non-linear equation system which can be very costly and
computationally complex.
We refer to [39, 144] for the proper definition and further information of
stiffness.

2.8 Boundary Conditions

Until now we have considered finite difference schemes in order to approx-
imate solutions to partial differential equations. The implementation of the
initial value u(0, x) = u0(x) has been used as the initialization v0 = u0 for the
finite difference schemes. These initial value problems were only considered
on the real line (−∞,∞) where we did not encompass the boundary values.
In order to solve initial-boundary value problems, we must use the boundary
conditions required by the partial differential equations in order to determine
uniquely solutions.
As we presented in the previous chapter, we have different kind of boundary
conditions which are needed for a well-posed initial-value problem.
For a partial differential equation on Ω × R+ with boundary δΩ and smooth
function g ∈ C1 we have
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• Dirichlet-Boundary Condition

u(t, x) = g(t, x), (2.78)

for x ∈ δΩ and t > 0.

• Neumann-Boundary Condition

∂u(t, x)

∂n
= g(t, x), (2.79)

for x ∈ δΩ, outer normal n and t > 0.

• Robin-Boundary Condition

αu(t, x) + β
∂u(t, x)

∂n
= g(t, x), (2.80)

for x ∈ δΩ, outer normal n, α, β ∈ R≥0 and t > 0.

We will illustrate the inclusion of these boundary conditions for the advection
equation (2.1) on the Lax-Wendroff scheme for c > 0 (2.55):

vn+1
i = vni −

cλx
2

(
vni+1 − vni−1

)
+ (

cλx
2

)2
(
vni+1 − 2vni + vni−1

)
. (2.81)

As we explained in Chapter 1.2, the well-posed advection equation (2.1) re-
quires only one boundary condition, depending on the sign of the velocity c.
In the following we choose c > 0 and hence the boundary condition on the
left side of the domain at x = 0.
For i = 1 the Lax-Wendroff scheme reads

vn+1
1 = vn1 −

cλx
2

(vn2 − vn1 ) + (
cλx
2

)2 (vn2 − 2vn1 + vn0 ) . (2.82)

As we can see, vn0 is necessary in order to compute vn+1
1 .

If we deal with Dirichlet-Boundary Conditions (2.78) with u(t, 0) = g(t), we
can directly apply vn0 = g(tn) for all t > 0.
With Neumann-Boundary Conditions (2.79) ∂u(t,0)

∂n
= g(t) we only have the

outer derivative at x = 0 given, which we cannot apply directly to the upwind
scheme.
For this reason there are several ways.
A very easy and common solution is to use finite differences on the outer
normal derivative to obtain for example a one-sided finite difference

un1−un0
4x = g(tn)

⇔ un0 = un1 −4tg(tn), for all n = N0.
(2.83)

70



Boundary Conditions

and obtain a formula for the boundary value vn+1
0 .

As expected these are, unlike for Dirichlet boundary conditions, only approx-
imation for vn+1

0 as we used a first order difference scheme to approximate
the outer derivative.
Another possibility is to combine the scheme at the boundary with i = 0 such
that

vn+1
0 = vn0 −

cλx
2

(
vn1 − vn−1

)
+ (

cλx
2

)2
(
vn1 − 2vn0 + vn−1

)
. (2.84)

Although we have now the formula to determine vn+1
0 with the scheme (2.84),

we have an unknown value vn−1 outside the domain Ω, which is also called a
ghost value.
We can determine such a value by approximating the Neumann condition
with a central difference

vn1−vn−1

24x = g(tn)

⇔ vn−1 = vn1 − 24xg(tn)
(2.85)

and apply the ghost value (2.85) to the Lax-Wendroff scheme (2.84) at i = 0

to obtain

vn+1
0 = vn0 − cλx4xg(tn) + (

cλx
2

)2 (2vn1 − 2vn0 − 24xg(tn)) . (2.86)

Not only do schemes sometimes need to be modified so that the boundary
conditions can be applied, but also some schemes do need additional values
which are not given by the partial differential equation.
If we look at the domain Ω = [0, xend] with xi = i4x and xend = (M + 1)4x,
we see that with the Lax-Wendroff method in order to compute vn+1

M and vn+1
M+1

additional boundary conditions are needed, so called numerical boundary
condition.
Those numerical boundary conditions should be some form of extrapolation
that determines the solution on the boundary in regards to the solution in the
interior domain. Typical examples are

• vn+1
M+1 = vn+1

M

• vn+1
M+1 = 2vn+1

M − vn+1
M−1

• vn+1
M+1 = vnM

• vn+1
M+1 = 2vnM − vnM−1
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where the first two examples are simple extrapolations and the latter two
quasi-characteristic extrapolation which are extrapolations derived near the
characteristics.
The choice depends not only on the desired accuracy and also on the ad-hoc
physical properties some boundary conditions have (such as mass preserva-
tion, see Section 1.3) but also on stability.
The stability of boundary conditions not only depend on the boundary condi-
tion itself, but also on the finite difference scheme that is being used.
If an unstable boundary condition is used on a stable scheme, then oscilla-
tions can still arise, originating at the boundary and propagating through the
domain.
As we can see, a fully stable finite difference schemes consists of a stable
finite difference scheme on an unbounded domain, and of boundary condi-
tions, which are stable when applied to the stable finite difference scheme.
With the stability analysis given in Section 2.3 we presented the necessary
tools to determine stability.
Analyzing the stability of boundary conditions can be difficult and involves
complex algebraic manipulations.
A general theory to analyze stability of boundary conditions for finite differ-
ence schemes is the Gustafsson-Kreiss-Sundstrom-Osher theory (GKSO the-
ory), developed by Kreiss, Sundstrom and Osher [62, 114, 115] to which we
refer here as we will not include it in this work.
Another more general analysis of stability is the so called Matrix Method,
which considers both the finite difference scheme with the boundary condi-
tions for its stability analysis.
To demonstrate its application, we consider a general explicit finite differ-
ence scheme with boundary conditions

vn+1 = Cvn + bn (2.87)

with matrix C ∈ R(M+1)×(M+1) and vector bn ∈ RM+1.
This can be rewritten in

vn+1 = Cn+1v0 +
n+1∑
j=0

Cn+1−jbj. (2.88)

If the norms of ‖ Cj ‖ are bounded uniformly for 0 ≤ n4t ≤ T , we get

4x ‖ vn ‖≤ CT

(
4x ‖ v0 ‖ +4x

n+1∑
j=0

‖ vj0 ‖

)
(2.89)

with ‖ vj0 ‖ the boundary data at i = 0.
This inequality is equivalent to the stability definition given in 2.4.2 with the
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addition of the boundary value.
Thus the boundedness of matrix C is giving us necessary and sufficient con-
ditions for the stability of (2.87).
Despite it is generality in analyzing stability, the matrix method has two ma-
jor disadvantages.
Firstly, it is quite difficult in proving the estimates of the matrices Cj, be-
cause the size of the matrix increases with decreasing 4x but for stability,
this estimation must be independent of 4x.
Secondly, since the matrix method incorporates both the finite difference
scheme with the boundary conditions, it is difficult to determine whether an
instability originates from an unstable finite difference scheme and/or from
unstable boundary conditions.

2.8.1 Mass Preservation

Before we conclude this section about boundary conditions, we want to demon-
strate another method to derive boundary conditions which hold specific
properties which preserves attributes of the original partial differential equa-
tion.
As mentioned in Chapter 1.2, certain initial-boundary value problems possess
certain properties such as mass or energy preservation [30].
For the one-dimensional diffusion equation (2.2) on the domain Ω := [0, L]

with no-flux boundary condition, we showed that the total mass of u is con-
served in time

I(t) :=

∫
Ω

u(t, x)dx =

∫
Ω

u(0, x)dx = const, (2.90)

which is equivalent to

dI(t)
dt

= d
dt

∫
Ω

u(t, x)dx =

∫
Ω

∂tu(t, x)dx =

∫
Ω

D∂xxu(t, x)dx

=

∮
δΩ

D∂xu(t, x)dx = D [∂xu(t, L)− ∂xu(t, 0)] = 0.

(2.91)

It is beneficial to use finite difference schemes that preserve (2.91) in a dis-
crete manner.
However we need to define the basic ideas behind the numerical integration
first.
We will refer to [24, 29] for the proper definitions, theorems and notation of
so called quadrature formulas and especially of the class of closed Newton-
Cotes formulas which are being used for the mass-preserving boundary con-
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ditions.

For equidistant nodes xi = a + i4x with 4x = b−a
n

we define the so called

closed Newton-Cotes formulas to compute
∫ b
a
f(x)dx.

Definition 2.8.1 (closed Newton-Cotes formulas). A quadrature Qn+1 is
called a closed Newton-Cotes formula if it is in the form

Qn+1[f ] := 4x
n∑
i=0

αif(xi) (2.92)

with the weights defined as

αi :=

∫ n

0

n∏
j=0,j 6=i

s− j
i− j

ds. (2.93)

If s is chosen such that σi := sαi, i = 0, . . . , n with σi ∈ Z, the closed Newton-
Cotes formulas can be written as

Qn+1[f ] =
b− a
ns

n∑
i=0

σif(xi). (2.94)

A collection of some closed Newton-Cotes formulas can be found in table 2.4.

n σi ns |Rn+1[f ]| Name

1 1 1 2 4x3

12
f ′′(ξ) Trapezoidal rule

2 1 4 1 6 4x5

90
f 4(ξ) Simpson rule

3 1 3 3 1 8 34x5

80
f 6(ξ) 8/3 rule

4 7 32 12 32 7 90 84x7

945
f 6(ξ) Milne rule

5 19 75 50 50 75 19 288 2754x7

12096
f 6(ξ)

6 41 216 27 272 27 216 41 840 94x9

1400
f 8(ξ) Weddle rule

Table 2.4: Closed Newton-Cotes formulas for different number of nodes n for
ξ ∈ [a, b].

We want to give to examples of closed Newton-Cotes formulas for the interval
[a, b] with a = x0 < x1 < · · · < xm = b and 4x = xi+1 − xi ∀i = 0, . . . ,m.

• Trapezoidal rule

QTr
2 [f ] :=

b− a
2

[f(a) + f(b)] (2.95)

• Simpson rule

QSim
3 [f ] :=

b− a
6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
(2.96)
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• Composite Trapezoidal rule

QcompTr
2,m [f ] :=

m−1∑
i=0

Q
Tr(i)
2 [f ]

= 4x
2

m−1∑
i=0

(f(xi) + f(xi+1))

(2.97)

• Composite Simpson rule

QcompSim
3,m [f ] :=

m−1∑
i=0

Q
Sim(i)
3 [f ]

= 4x
3

f(x0) + 2

m
2
−1∑

i=1

f(x2i) + 4

m
2∑
i=1

f(x2i−1) + f(xm)

 .
(2.98)

Mass-preserving boundary conditions

We will now derive mass preserving boundary conditions for the θ-method
(2.24) for the diffusion equation (2.2) on the domain [0, L] with no-flux bound-
ary conditions and xi = i4x for i = 0, . . . , N + 1.
We will use as discrete integral the composite trapezoidal rule (2.97) and
have

In+1
2 − In2 = 4x

2

N+1∑
i=0

(
un+1
i + un+1

i+1 − uni − uni+1

)
= 4x

[
N∑
i=1

[
(1− θ)Dµx

2

(
uni+1 − 2uni + uni−1

)
+ θDµx

2

(
un+1
i+1 − 2un+1

i + un+1
i−1

)]
+
un+1

0 −un0
2

+
un+1
N+1−u

n
N+1

2

]
= 4x

[
(1− θ)Dµx

2

(
unN+1 − unN + un0 − un1

)
+θDµx

2

(
un+1
N+1 − u

n+1
N + un+1

0 − un+1
1

)
+
un+1

0 −un0
2

+
un+1
N+1−u

n
N+1

2

]
.

(2.99)

Rearranging the terms in (2.99) and choosing un+1
0 and un+1

N+1 such that the
expression vanishes, gives us the following implicit discrete boundary condi-
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tions

un+1
0 = un0 + (1− θ)Dµx (un1 − un0 ) + θDµx

(
un+1

1 − un+1
0

)
,

un+1
N+1 = unN+1 + (1− θ)Dµx

(
unN − unN+1

)
+ θDµx

(
un+1
N − un+1

N+1

)
.

(2.100)

If we take a closer look and compare the formula for the boundary values
(2.100) with the actual θ-method, we notice their strong resemblance.
This is due to the fact that discretizing the Neumann boundary condition with
a central difference

∂xu(tn, 0) ≈ un1−un−1

24x ,

∂xu(tn, L) ≈ unN+2−u
n
N

24x

(2.101)

we obtain the ghost value un−1 (resp. unN+2) which can be used for the θ-scheme
for i = 0 (resp. i = N + 1) and results in the same boundary conditions. This
application was also shown in (2.85).
Further inspection of the coefficients with application of definition of 2.4.2
for monotone schemes, we can confirm that the θ-scheme with trapezoidal
mass-preserving boundary conditions (2.100) are monotone.

Proposition 2.8.2. The θ-scheme (2.24) consistent with diffusion equation
(2.2) with the trapezoidal boundary conditions (2.100) constructed with the
use of the discrete integral method In+1

2 − In2 = 0 is mass-preserving. More-
over, the scheme, obtained with the integral method above, is second order
in space up to the boundaries since it can be equivalently obtained using the
following second-order approximation of the first derivative including a ghost
cell (2.101).
Finally the scheme (2.24) is also monotonicity preserving under the stability
condition (2.38).

If instead of the mass-preserving trapezoidal boundary conditions, we used a
first order one sided approximation of the homogeneous Neumann boundary
condition

∂xu(tn, 0) ≈ un1−un0
4x ,

∂xu(tn, L) ≈ unN+1−u
n
N

4x

(2.102)

and plug it into the trapezoidal integral method (2.99), we see that In+1
2 −In2 =

O(4x).
For some schemes we have stability restrictions that lead to fix
λx := 4t

4x . This would mean for the integral method, that the error is O(4x) =

O(4t) such that for 0 < N4t ≤ T we obtain the error O(1) and the mass
cannot be preserved.
In Figure 2.1 the evolution of mass over time is shown with the asymptotic
solution for both mass-preserving boundary conditions and upwind boundary
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(a) Evolution of mass (b) Constant asymptotic solution

Figure 2.1: The evolution of mass and the asymptotic solution for the one-dimensional
parabolic equation, computed with the finite difference scheme for both mass-preserving
boundary conditions and upwind boundary conditions. The mass is exactly preserved with
mass-preserving boundary conditions compared to the other boundary condition.

conditions. The question arises whether it is possible to derive higher order
mass-preserving boundary conditions by using an higher order discrete inte-
gral method.
We can illustrate the answer by using the same method as for the mass-
preserving trapezoidal boundary conditions but instead we will use the com-
posite Simpson rule, applied to the θ-scheme. For the sake of simplicity, we
set θ = 0 which corresponds to an explicit scheme

un+1
i = uni +Dµx

(
uni+1 − 2uni + uni−1

)
. (2.103)
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We will use as discrete integral the composite simpson rule (2.98) and have

In+1
3 − In3 = 4x

3
[ 2

N−1
2∑
i=1

un+1
2i − un2i + 4

N+1
2∑
i=1

un+1
2i−1 − un2i−1

+un+1
0 − un0 + un+1

N+1 − unN+1

]
= 4x

3
[ 2Dµx

N−1
2∑
i=1

[
un2i+1 − 2un2i + un2i−1

]
+ 4Dµx

N+1
2∑
i=1

[
un2i − 2un2i−1 + un2i−2

]
+un+1

0 − un0 + un+1
N+1 − unN+1

]
= 4x

3
[ −4Dµx

N−1
2∑
i=1

un2i − 4Dµx

N−1
2∑
i=2

un2i−1 + 4un0 − 6un1 − 6unN + 4unN+1

+un+1
0 − un0 + un+1

N+1 − unN+1

]
.

(2.104)
As can be seen, the equation does not cancel the summation out, thus making
the composite Simpson rule incompatible to find mass-preserving boundary
conditions for the θ-scheme. However, we want to remark at this point that
with other finite difference schemes, such as multistep schemes, it can be
possible to derive mass-preserving boundary conditions which are compati-
ble with the composite Simpson rule.

For the presented methods we assume an equidistant spatial discretization.
Of course this method can also be applied on adaptive spatial discretization
for Newton-Cotes formulas. Also so called Gauß-Quadratures can be used,
which is more accurate compared to Newton-Cotes formulas with the same
number of function evaluation.
Since the function evaluations we are using are from finite difference schemes
with an equidistant discretization of the domain Ω, we will not indulge in them
further and refer to [24, 29], where the numerical integration in higher di-
mensions can be found as well.

2.9 Asymptotic High Order (AHO) Schemes

This section is dedicated to a special class of finite difference schemes for nu-
merical solutions of dissipative hyperbolic partial differential equations with
source term, such as the equations presented in Chapter 1.2 based on [109].
Many difficulties arise when dealing with equations of this kind, such as stiff-
ness of the source term, instability of the solutions and inaccurate approxi-
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mation of stationary solutions.
Many attempts were made in the last decades to address these problems like
well balanced schemes [56, 59, 75], IMEX-schemes [9] which we briefly pre-
sented and discussed in Section 2.7, upwinding the source term [7, 11, 13,
21, 120] and asymptotic preserving schemes [76, 77].
The idea is to use the knowledge of the analytical behaviour of the solution
and to plug this information into the schemes to obtain additional properties.
A general type of schemes that has arisen from this are Asymptotic High
order schemes (AHO) [109] to deal with the inaccuracies that come from
the approximation of non constant asymptotic states for large times.
AHO schemes are based on standard finite differences schemes we intro-
duced before, which uses a modified treatment of the source term and con-
sider the behaviour of solutions near non constant stationary states.
These AHO schemes increase their order of accuracy when converging to-
wards the stationary solutions.

We present the AHO schemes on the hyperbolic initial-value-boundary prob-
lem (dissipative one-dimensional wave equation with external force) intro-
duced in [109]  ∂tu(t, x) + ∂xv(t, x) = 0,

∂tv(t, x) + λ2∂xu(t, x) = f(t,x)−v
τ

(2.105)

with initial conditions at t = 0 u(0, x) = u0(x),

v(0, x) = v0(x)
(2.106)

and no-flux Neumann boundary conditions
∂u(t,x)
∂x

= 0, for x ∈ δΩ,

∂f(t,x)
∂x

= 0, for x ∈ δΩ,
(2.107)

for u, f, v : R+ × Ω→ R and constants λ, τ, a, b > 0 on the domain Ω := [0, L].

We need to remark that the hyperbolic equation (2.105) used in [109] fixes
the relaxation time τ in (1.36) with τ = 1.
Equation (2.105) is a general form of the biological model introduced in
(1.36), where we chose f = u∇φ with a chemoattractant density φ subject
to the parabolic diffusion equation

∂tφ(t, x)−D∂xxφ(t, x) = αu(t, x)− βφ(t, x) (2.108)

with source term αu− βφ, α, β ≥ 0.
u denotes the density of cells, the function v is their averaged flux, and the
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function f the chemotactic-driven movement of the cells.
A standard procedure is to apply an explicit upwind method with the source
term being approximated by the Euler scheme.
We have already discussed the analytical behaviour and properties of (2.105)
and its stationary solutions in Section 1.2. Using the standard finite differ-
ence scheme on (2.105) leads to good approximation of the stationary solu-
tion of u, while for the flux v we obtain a rather big error and not v = 0 under
the no-flux condition.
If we have a look at the scheme

un+1
i = uni +

4t
24x

(
vni+1 − vni−1

)
+
λ

2

4t
4x

(
uni+1 − 2uni + uni−1

)
, (2.109)

we see that for u near the equilibrium and for large ∂xxu, the mesh grid size
4x must be chosen very small to make v constant.
For constant asymptotic solutions, this method would lead to a constant v
whereas for non-constant asymptotic solutions with large ∂xxu, this leads to
large errors. Since this problem is not due to stiffness of the source term,
implicit methods will not improve this situation.

As we have shown in Section 1.2, we can rewrite (2.105) in a more math-
ematically tractable way by using its diagonal variables

w = 1
2

(
u− v

λ

)
,

z = 1
2

(
u+ v

λ

) (2.110)

and its inversion
u = w + z,

v = λ(w − z)
(2.111)

to obtain the following system of equations ∂tw − λ∂xw = 1
2τ

(z − w)− 1
2τλ
f,

∂tz + λ∂xz = 1
2τ

(w − z) + 1
2τλ
f

(2.112)

with boundary conditions now being

w(t, 0) = z(t, 0),

w(t, L) = z(t, L),

∂xf(t, 0) = ∂xf(t, L) = 0.

(2.113)
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Before we present the AHO schemes, let us analyse the qualitative properties
of the upwind scheme on the hyperbolic-parabolic equation system

∂tw − λ∂xw = 1
2τ

(z − w)− ∂xφ 1
2τλ

(w + z) ,

∂tz + λ∂xz = 1
2τ

(w − z) + ∂xφ
1

2τλ
(w + z) ,

∂tφ+D∂xxφ = au− bφ,

(2.114)

where we chose f = u∂xφ in (2.112).
Because the hyperbolic equation includes the term ∂xφ, we need an approx-
imation by using a standard second order central difference scheme for the
interior points and a second order forward difference scheme for the bound-
aries where φ satisfy homogenous Neumann boundary conditions, which yields
to the discretization vector

Φn
x =

1

24x



4
3

(φn2 − φn1 )

φn3 − φn1
...

φnM − φnM−2

4
3

(
φnM − φnM−1

)


(2.115)

with (Φn
x)0 = (Φn

x)M+1 = 0. If we choose an explicit upwind method for the
hyperbolic part of the equation (2.114) (in regards to the direction of the
propagation ±λ) and the Crank-Nicolson scheme for the parabolic equation
we obtain the following finite difference scheme

wn+1
i = wi + λ4t4x

(
wni+1 − wni

)
− 4t

2τλ
(Φn

x)i (w
n
i + zni )− 4t

2τ
(wni − zni ) ,

zn+1
i = zi − λ4t4x

(
zni − zni−1

)
+ 4t

2τλ
(Φn

x)i (w
n
i + zni ) + 4t

2τ
(wni − zni ) ,

φn+1
i = φni +D 4t

24x2

((
φni+1 − 2φni + φni−1

)
+
(
φn+1
i+1 − 2φn+1

i + φn+1
i−1

))
−4t

2

(
a
(
wni + zni + wn+1

i + zn+1
i

)
− b
(
φni + φn+1

i

))
,

(2.116)
which is obviously a consistent finite difference scheme for (2.114) and stable
for λ4t4x ≤ 1 which can be proved with the concepts and methods discussed
in Section 2.3 and 2.5 and extended for partial differential equation systems
in 2.10.
We recall some of the analytic behaviour of the partial differential equation
(2.105) from Chapter 1.2.
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• Mass preservation
d

dt

∫
[0,L]

u(t, x)dt = 0 (2.117)

• Symmetry preservation
u(0, L− x) = u(0, x)

v(0, L− x) = −v(0, x)

φ(0, L− x) = φ(0, x)

⇒


u(t, L− x) = u(t, x)

v(t, L− x) = −v(t, x),

φ(t, L− x) = φ(t, x)

for t > 0

(2.118)

• Stationary solutions with infinitely many nonconstant and a class of
constant stationary solutions (u∗, v∗, φ∗).

u∗ = U,

v∗ = 0,

φ∗ = α
β
U,

stable for 0 < U ≤ U1 =
λ2

α

(
D
π2

L2
+ β

)
, else wise unstable.

(2.119)

A more detailed explanation about the analytical properties can be found in
the previous Section 1.2.

In [109] it is shown that the coupled finite difference scheme (2.116) does
preserve the properties (2.117), (2.118) and (2.119).
In view of the construction of the AHO schemes, we regard the general linear
hyperbolic system

∂tU + A∂xU = BU + F (2.120)

with solution U and define Un+1 = H(Un,Fn) as a linear numerical scheme
consistent with (2.120) and local truncation error TH .
Furthermore let Û be the solution of the generic stationary solution of

A∂xÛ = BÛ + F . (2.121)

With this we can formally define the AHO schemes as follow.

Definition 2.9.1 (AHO-scheme). Let Un+1 = H(Un,Fn) be a numerical
scheme, consistent with (2.120) with stationary solution Û . Then we say the
scheme is locally AHO of order p, i.e. (AHO)p if the scheme is of order p on
every stationary solution Û with TH(Û) = O(4xp).

If we assume Û to be a stationary asymptotic state for U , U − Û = τ(1
t
) as

t → ∞ in some appropriate functional space topology, where τ is a modulus
of continuity. Then

TH(U) = TH(U − Û) + TH(U) ≈ τ̃(
1

t
) +O(4xp) (2.122)
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for some modulus of continuity τ̃ .

For the sake of an easier application for upwinding, we diagonalize (2.120)

with the diagonalizing matrixR =

(
1 1

−λ λ

)
and its inverseR−1 = 1

2

(
1 − 1

λ

1 1
λ

)

such that ω :=

(
w

z

)
= R−1

(
u

v

)
to get the diagonalized form of (2.120)

∂tω + Λ∂xw = Bω + F (2.123)

with Λ =

(
−λ 0

0 λ

)
, B = 1

2τ

(
−1 1

1 −1

)
, F = 1

2τλ

(
−f
f

)
and consider a

general consistent finite difference scheme of (2.123) of the form

ωn+1
i − ωni
4t

+
Λ

24x
(
ωni+1 − ωni

)
− q

24x
(
ωni+1 − 2ωni + ωni−1

)
=

∑
l=−1,0,1

(
Blωni+l +DlF n

i+l

)
(2.124)

with matrices Bl, Dl ∈ R2×2 and artificial viscosity q ∈ R≥0.
Or by using the diagonalizing matrix R in the original variables u and v to the
equivalent finite difference scheme

un+1
i = uni + 4t

24x

(
vni+1 − vni−1

)
+ λ 4t

24x

(
uni+1 − 2uni + uni−1

)
+4t

2

(∑
l=−1,0,1

[
βlu,uu

n
i+l + 1

λ
βlu,vv

n
i+l + 1

λ
γlu,ifi+l

])
,

vn+1
i = vni − λ2 4t

24x

(
uni+1 − uni−1

)
+ λ 4t

24x

(
vni+1 − 2vni + vni−1

)
+4t

2

(
λ
∑

l=−1,0,1

[
βlv,uu

n
i+l + βlv,vvi+l + γlvf

n
i+l

])
(2.125)

with

RBlR−1 =
1

2

(
βlu,u

βlu,v
λ

λβlv,u βv,v

)
, RDlR−1 =

1

2

(
ηlu

γlu
λ

ηlv γlv

)
. (2.126)

We can recognize (2.124) as a 2-dimensional form of the viscous form (2.30).
The matrices Bl and Dl are being used to balance the source term to allow us
to increase the order of accuracy for large times near steady state solutions.
Of course these matrices must follow certain conditions in order for the
scheme (2.124) to be consistent and monotone as well.
For consistency, we require the condition∑

l=−1,0,1

Bl = B,
∑

l=−1,0,1

Dl = I2,2 (2.127)
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and I2,2 ∈ R2×2 being the unity matrix.
For monotonicity [6] we require the two conditions

Bl
i,j ≥ 0, for l = −1, 0, 1 and i 6= j (2.128)

and

1− 4t
4x

q +4tB0
i,i ≥ 0, ∓(−1)i

4t
4x

λ

2
+
4t

24x
q +4tB±1

i,i ≥ 0, for i = 1, 2.

(2.129)
If we use the scheme (2.124) to compute the local truncation error TH for
the stationary solutions of (2.121) and use a Taylor expansion, we obtain with
∂tŵ = 0, Λ∂xω̂ = Bω̂ + F and (Λ−1B)2 = 0

T ω̂ni = λ
24x

(
ω̂ni+1 − ω̂ni−1

)
− q

24x

(
ω̂ni+1 − 2ω̂ni + ω̂ni−1

)
−
∑

l=−1,0,1B
lω̂ni+l −

∑
l=−1,0,1D

lF (tn, xi+l)

= ((B − (B−1 +B0 +B1)) ω̂ni + (I2,2 − (D−1 +D0 +D1))F (tn, xi)

−4x
2

(2 (B1 −B−1) Λ−1Bω̂in+ (qΛ−1B + 2 (B1 −B−1)) Λ−1F (tn, xi)

(qΛ−1 + 2 (D1 −D−1)) ∂xF (tnxi))

−4x2

6
(3 (B1 +B−1) Λ−1BΛ−1F (tn, xi) + ( (B1 +B−1)−B) Λ−1∂xF (tn, xi)

+ (3 (D1 +D−1)− I2,2) ∂xxF (tn, xi)) +O(4x3).
(2.130)

To impose second order accuracy on the stationary solution, we impose the
following conditions

B1 −B−1 = −q
2

Λ−1B =
q

2λ

(
−1 1

−1 1

)
, D1 −D−1 = −q

2
Λ−1 =

q

2λ

(
1 0

0 −1

)
(2.131)

which, with consistency condition (2.127) translates into the equivalent con-
ditions(

βlu,u β1
u,v

β1
v,u β1

v,v

)
+

(
β0
u,u β0

u,v

β0
v,u β0

v,v

)
+

(
β−1
u,u β−1

u,v

β−1
v,u β−1

v,v

)
=

(
0 0

0 −2

)
,(

βlu,u β1
u,v

β1
v,u β1

v,v

)
−
(
β−lu,u β−1

u,v

β−1
v,u β−1

v,v

)
= q

2

(
0 1

0 0

)
,(

γ1
u

γ1
v

)
+

(
γ0
u

γ0
v

)
+

(
γ−1
u

γ−1
v

)
=

(
0

2

)
,(

γ1
u

γ1
v

)
−
(
γ−1
u

γ−1
v

)
= q

λ

(
−1

0

)
.

(2.132)

This leaves us with a certain degree of freedom which can be used to add
additional properties such as the conversation of symmetry (2.118) that the
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system possesses for symmetric initial data.
For

β0
u,v = 0, β0

v,u = 0, γ0
u = 0 (2.133)

we achieve the symmetry preservation.

Proposition 2.9.2. A scheme in the form (2.125) is consistent for the system
(2.120) and of order 2 on stationary solutions, hence a (AHO)2-scheme, if
conditions (2.132) are verified. Moreover if it also verifies conditions (2.133),
it conserves the symmetry of the solutions for symmetric initial data. Mono-
tonicity, for a given f, holds under conditions (2.128) and (2.129).

With the conditions in proposition 2.9.2 we can derive an (AHO)2 scheme
with the coefficients for the diagonalized scheme (2.124) as

B0 = 1
4τ

(
−1 1

1 −1

)
, B1 = 1

4τ

(
−1 1

0 0

)
, B−1 = 1

4τ

(
0 0

1 −1

)
D0 = 1

2τ

(
1 0

0 1

)
D1 = 1

2τ

(
1 0

0 0

)
, D−1 = 1

2τ

(
0 0

0 1

) (2.134)

and we obtain the following (AHO)2 scheme if we choose q = λ with stability
conditions

4x ≤ 4λτ,

4t ≤ 44xτ
4x+4τλ

,
(2.135)

which are being derived by satisfying the monotonicity conditions in (2.128)
and (2.129)

wn+1
i = wni + λ4t4x

(
wni+1 − wni

)
+ 4t

4τ

(
zni − wni + zni+1 − wni+1

)
− 4t

4τλ

(
fni + fni+1

)
,

zn+1
i = zni − λ

4t
4x

(
zni − zni−1

)
+ 4t

4τ

(
wni − zni + wni−1 − zni−1

)
+ 4t

4τλ

(
fni + fni−1

)
(2.136)

or the equivalent scheme

un+1
i = uni + λ 4t

24x

(
uni+1 − 2uni + uni−1

)
−
(
4t

24x −
4t
4τλ

) (
vni+1 − vni−1

)
+ 4t

4τλ

(
fni−1 − fni+1

)
,

vn+1
i = vni − λ2 4t

24x

(
uni+1 − uni−1

)
+ λ 4t

24x

(
vni+1 − 2vni + vni−1

)
−4t

4τ

(
vni+1 + 2vni + vni−1

)
+ 4t

4τ

(
fni+1 + 2fni + fni−1

)
.

(2.137)

With the successfully derived (AHO)2 scheme [109] for the interior points,
we still need to compute the appropriate boundary conditions. The bound-
ary conditions for the flux v are already given from the initial-boundary-value
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problem (2.107) with vn0 = vnM+1 = fn0 = fnM+1 = 0 but we still need values for
un0 and unM+1.
For the derivation of the remaining numerical boundary condition, we can
use the results presented in Section 2.8.1 where we obtained mass preserv-
ing boundary conditions by applying a discrete integral formulation and us-
ing the property that the partial differential equation under no-flux boundary
condition is mass preserving. Since mass-preservation is a property the par-
tial differential equation (2.117), we can apply this methodology.
As we recall from Section 2.8.1, the quantity

dI(t)

dt
=

d

dt

∫
Ω

u(t, x)dx =

∫
Ω

∂tu(t, x)dx =

∫
Ω

−∂xvdx = v(t, 0)− v(t, L)︸ ︷︷ ︸
no flux BC condition

= 0

(2.138)
is satisfied by the hyperbolic partial differential equation (2.105).
So we want an equivalent property to be fulfilled in a discrete manner, thus
using the AHO scheme on

In+1 = In, (2.139)

for all n ≥ 0.
If we use the composite trapezoidal rule (2.97) we obtain

In+1 − In = 4x

((
un+1

0 − un0
)

2
+

M∑
i=1

(
un+1
i − uni

)
+

(
un+1
M+1 − unM+1

)
2

)
= 0.

(2.140)
Using the general scheme (2.125) we obtain

4x (
un+1

0

2
− un0

2
+

un+1
M+1

2
− unM+1

2

− 4t
24x

(
vnM+1 + vnM − vn0 − vn1

)
+ λ 4t

24x

(
unM+1 − unM + un0 − un1

))
+4t

2

M∑
i=1

∑
l=−1,0,1

[
βlu,uu

n
i+l + βlu,vv

n
i+l + γluf

n
i+l

]
= 0.

(2.141)
Applying the conditions (2.132) for the (AHO)2 scheme (2.137) into (2.141)
leads to

4x (
un+1

0

2
− un0

2
+

un+1
M+1

2
− unM+1

2

− 4t
24x

(
vnM+1 + vnM − vn0 − vn1

)
+ λ 4t

24x

(
unM+1 − unM + un0 − un1

))
+4t

2

[
q

2τλ

(
vnM+1 + vnM − vn1 − vn0

)
− q

2τλ

(
fnM+1 + fnM − fn1 − fn0

)]
= 0

(2.142)

86



Asymptotic High Order (AHO) Schemes

and reorganizing such that the expression equals to zero brings us the fol-
lowing mass-preserving boundary condition for the (AHO)2 scheme (2.137)

un+1
0 = un0 + λ4t4x (un1 − un0 )−

(
4t
4x −

4t
2τλ

)
(vn0 + vn1 )− 4t

2τλ
(fn0 + fn1 ) ,

un+1
M+1 = unM+1 + λ4t4x

(
unM − unM+1

)
+
(
4t
4x −

4t
2τλ

) (
vnM+1 + vnM

)
+ 4t

2τλ

(
fnM+1 + fnM

)
(2.143)

without applying the boundary conditions vn0 = vnM+1 = fn0 = fnM+1 = 0 yet.
The general form of the boundary conditions (2.143) is more versatile when
we deal with multi-domain transmission models where the system is mass-
preserving, but the flux at the boundary are not zero, which happens at the
interfaces between the domains, which we will use later (see Chapter 3).
It is also interesting to note, that if we use non-mass-preserving boundary
conditions, such as the boundary conditions for the upwind scheme (2.116)
where the error of the discrete integral (2.139) is O(4x), then because of the
large time duration, the error will increase with time [109]. Mass-preservation
is a crucial property for the scheme to possess if we want the non-constant
asymptotic state to be approximated well enough.

For an extension to have an (AHO)3 scheme, we need to generalize the con-
sistency conditions (2.127) into∑

l=−1,0,1

Bl = B +4xC,
∑

l=−1,0,1

Dl = I2,2 +4xE, (2.144)

for matrices C,E ∈ R2×2. To gain a third order truncation error we impose
the following additonal conditions

C = EB, D1 −D−1 = − q
2
Λ−1, D1 +D−1 = 1

3
I2,2,

B1 −B−1 = −EΛ− q
2
Λ−1B, B1 +B−1 = 1

3
B.

(2.145)

Since the (AHO)3 schemes are not being used in this work, we refer to the
paper [109] where the scheme with consistent conditions can be found.

Theorem 2.9.3. For every AHO scheme, which satisfies conditions (2.144),
we have that for all xi, 1 ≤ i ≤M and tn, n > 0,

Tω = O(4t) +O(4x). (2.146)

For the proof on stability of the boundary conditions and numerical tests of
the AHO schemes we refer to [109].
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Before the complete the discussion on AHO schemes, we want to extend the
AHO schemes for

∂tu(t, x) + ∂xv(t, x) = g(t, x),

∂tv(t, x) + λ2∂xu(t, x) = 1
τ

(f(t, x)− v(t, x)) .
(2.147)

This is a more general equation by adding an additional source term g(t, x)

to the first equation of (2.105). As we already have thoroughly described
in Section 1.2, they are based on chemotactic models on hyperbolic heat
equation where the source term f accounts for the chemotactic motion in the
flux, whereas the source term g is the actual source term for the quantity u.
We can also here diagonalize (2.147) into

∂tω + Λ∂xω = Bω + F̃ (2.148)

just as (2.123) but with an additional term F̃ = F + 1
2

(
g

g

)
.

The extra term needs to be considered.
We rewrite (2.125) with gni = g(tn, xi) into

un+1
i = uni + 4t

24x

(
vni+1 − vni−1

)
+ λ 4t

24x

(
uni+1 − 2uni + uni−1

)
+4t

2

(∑
l=−1,0,1

[
βlu,uu

n
i+l + 1

λ
βlu,vv

n
i+l + 1

λ
γlu,if

n
i+l + ηlug

n
i+l

])
,

vn+1
i = vni − λ2 4t

24x

(
uni+1 − uni−1

)
+ λ 4t

24x

(
vni+1 − 2vni + vni−1

)
+4t

2

(
λ
∑

l=−1,0,1

[
βlv,uu

n
i+l + βlv,vvi+l + γlvf

n
i+l + ηlvg

n
i+l

])
.

(2.149)

With the AHO2 conditions (2.134) we can derive the conditions on the coeffi-
cients for the source term g(

η1
u

η1
v

)
=

(
1
2

− q
2

)
,

(
η0
u

η0
v

)
=

(
1

0

)
,

(
η−1
u

η−1
v

)
=

(
1
2
q
2

)
(2.150)

and obtain the following AHO2 scheme with source term g

un+1
i = uni + λ 4t

24x

(
uni+1 − 2uni + uni−1

)
−
(
4t

24x −
4t
4τλ

) (
vni+1 − vni−1

)
+ 4t

4τλ

(
fni−1 − fni+1

)
+ 4t

4

(
gni+1 + 2gni + gni−1

)
,

vn+1
i = vni − λ2 4t

24x

(
uni+1 − uni−1

)
+ λ 4t

24x

(
vni+1 − 2vni + vni−1

)
−4t

4τ

(
vni+1 + 2vni + vni−1

)
+ 4t

4τ

(
fni+1 + 2fni + fni−1

)
−λ4t

4

(
gni+1 − gni−1

)
.

(2.151)
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2.10 Extension to Higher Dimensions

We have introduced finite difference schemes and the concepts of consis-
tency, stability, convergence and order for scalar partial differential equa-
tions in one dimension. Before we proceed with the numerical simulations
of our biological model (1.45)-(1.47), we will briefly discuss the extension
of those concepts and results to systems of partial differential equations in
higher dimensions.
Firstly, we consider partial differential equation such as (2.2), (2.1) and (2.62)
where u is not an scalar, but a vector of dimension d, i.e u : [0,∞)× R→ Rd.
The diffusion coefficient D ∈ R≥0 becomes a symmetric matrix D ∈ Rd×d and
respectively the coefficient c ∈ R of the linear convection equation becomes
a matrix C ∈ Rd×d as well.
We remark here that for the convection equation system to be hyperbolic, the
matrix C must be diagonalizable with real eigenvalues and for the symmetric
matrix D of the diffusion equation to be parabolic, the real part of its eigen-
values must be positive.

The finite difference schemes we have used for the scalar partial differential
equations can be, in general, applied one-to-one to the linear partial differ-
ential equation systems. An example for the diffusion equation would be the
FTCS-scheme

V n+1
i = V n

i +D 4t
4x2

(
V n
i+1 − 2V n

i + V n
i−1

)
, (2.152)

where with the capital V m
i ∈ Rd we want to indicate that it is a vector and not

a scalar.
In the same manner for the scalar case, we can prove consistency and the
order of accuracy [102, 134].
The only main difference is in the stability analysis.
By applying the Von-Neumann stability analysis, we now do not have an am-
plification factor g but an amplification matrix G which can be obtained by
making the substitution Gneimθ for V n

m.
We obtain the general stability condition, similar to (2.48) such that for each
T > 0 there exist a constant CT such that for 0 ≤ nt ≤ T we have

‖ Gn ‖≤ CT . (2.153)

For strict hyperbolic systems, such as the convection equation system

∂tu+ C∂xu = 0 (2.154)

the matrix C ∈ Rd×d is diagonalizable with diagonalization matrix R ∈ Rd×d
and D = diag{λ1, . . . , λd} such that the we can rewrite the equation to

∂twi + λi∂xwi = 0, (2.155)

89



Extension to Higher Dimensions

for w = Ru and eigenvalues λi, i = 1, . . . , d. With (2.155) the stability only
depends on the scalar equations.
For the Lax-Friedrich scheme for the convection equation, we would obtain
the stability criteria

4t
4x
≤ 1

|λi|
, (2.156)

for i = 1, . . . , d or in general for the scheme

4t
4x
≤ 1

max
i=1,...,d

|λi|
. (2.157)

We also notice that the diagonalization to (2.155) is necessary to use the
upwind-scheme properly which needs to consider the direction of the char-
acteristic speeds λi.
A necessary but not sufficient condition for general schemes is

|gv| ≤ 1 +K4t, (2.158)

for each eigenvalue gv of the amplification matrix G.

Another method for stability analysis is the Matrix method, described in Sec-
tion 2.8, where we presented a way to determine stability on finite difference
schemes of partial differential equation systems.

Lastly, we give a brief overview of finite difference schemes for partial differ-
ential equations of spatial dimension higher than one.
For the linear convection-diffusion equation (2.62) in two dimensions we
would have ∂tu(t, x, y) + c · ∇u(t,x,y) = D∆u, for (x, y) ∈ R× R and t ≥ 0,

u(0, x, y) = u0(x, y), for (x, y) ∈ R× R,
(2.159)

for c =

(
c1

c2

)
, D > 0, c1, c2 ∈ R and initial value u0 : R2 → R.

For the discretization of the two dimensional domain Ω = [a, b]× [c, d] we now
have xi = i4x, yj = j4y , tn = n4t for i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1 with
4x,4y,4t > 0 and discretized vector (v)ni,j.
The discretization of the partial differential equation (2.62) is being made in
the same way as for one spatial dimension, just as consistency and order of
accuracy follows the same procedure.
For stability the same definitions apply and the matrix method can also be

90



Extension to Higher Dimensions

used to derive stability conditions.
For the von-Neumann stability analysis the ansatz

gneimθx+ijθy = vnm,j, for θx = 4xξ1 and θy = 4yξ2 (2.160)

can be used to derive stability condition.
For the numerical approximation of the two-dimensional convection-diffusion
equation (2.159) a suitable finite difference scheme would be the previously
mentioned one-dimensional Crank-Nicolson-Central-Space scheme

vn+1
i,j = vni,j +D4t

2

[
(vni+1,j−2vni,j+v

n
i−1,j)

4x2 +
(vni,j+1−2vni,j+v

n
i,j−1)

4y2

]
+D4t

2

[
(vn+1
i+1,j−2vn+1

i,j +vn+1
i−1,j)

4x2 +
(vn+1
i,j+1−2vn+1

i,j +vn+1
i,j−1)

4y2

]
−c1

4t
24x

(
vni+1,j − vni−1,j

)
− c2

4t
24y

(
vni,j+1 − vni,j−1

)
.

(2.161)

We can derive the stability condition by using the monotonicity condition
from definition 2.3.3 to obtain

1−D4t
(

1
4x2 + 1

4y2

)
≥ 0,

D4t
(

1
24x2 + 1

24y2

)
∓ c1

4t
4x ∓ c2

4t
4y ≥ 0

(2.162)

which leads to the stability conditions

Dµx +Dµy ≤ 1,

4x4y ≤ D 4y2

c14y+c24x +D 4x2

c14y+c24x

(2.163)

with µx := 4t
4x2 and µy := 4t

4y2 . These conditions can get simplified if we use
the same mesh grid size for both x and y with 4x = 4y and obtain

Dµ ≤ 1
2
,

4x ≤ D
(c1+c2)

.
(2.164)

As we can see, the stability criteria (2.164) are more restrictive than the ones
found in table 2.3 for one dimensional convection-diffusion equation (2.3).

With this we conclude the numerical background of finite difference schemes.
We have provided concepts and methodology to approximately solve partial
differential equation.
We are now able to apply this knowledge to thoroughly analyze and derive a
numerical scheme that provides us with an approximate solution of the OOC-
model (1.45)-(1.47).
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Chapter 3

Numerical Approximation of the
Multi-Domain Transmission
Model for the OOC

This chapter is devoted to provide some numerical approximations of the
mathematical models of chemotaxis describing the qualitative behaviour of
different cell species living in a confined environment which we have pre-
sented in Chapter 1.5.

We recall that in Chapter 1.1.1 we have presented the biological model which
is inspired by the laboratory experiment of the chemotactic movement and
interactions between immune and tumour cells in a microfluidic chip envi-
ronment, and created a mathematical model (1.45), (1.46), (1.47) for the
underlying biological model, based on coupled reaction-diffusion-transport
equations, that describes the qualitative behaviour accurately.
The results presented in this chapter have been published in [25].
Here we will present a positivity- and mass-preserving numerical discretiza-
tion of the mathematical model (1.45) with homogeneous Neumann boundary
conditions at the boundaries of the two-dimensional domain for the parabolic
reaction diffusion problem and a scheme for the inner nodes of the network
connecting the two dimensional chambers with the one dimensional chan-
nels.
Whereas we will use the parabolic reaction-diffusion-convection Keller-Segel-
like model (1.45) for the two dimensional chambers, we will study two differ-
ent models for the one dimensional channels: the one dimensional equivalent
to the parabolic reaction-diffusion-transport equation (1.46) and the hyper-
bolic model (1.47) which is based on the a Cattaneo model for chemosensitive
movements [54] and compare the different dynamics with different chemo-
tactic functions.



General Model of the OOC

The numerical simulation of both models will be conducted by respecting the
geometry of the micro chip of the laboratory experiment [15, 31] and the pa-
rameters are chosen such that they are reasonable for the quantities (cells,
chemicals etc.). The parameters can be found in table 3.1.
They will differ for the two experiments conducted on the microfluidic chip,
which represents the two different settings of the laboratory experiment de-
scribed in [1, 15, 31] and summarized in Section 1.1.1.
Also we will make a qualitatively comparison among the different chemotac-
tical functions f̂ which gradually increase the complexity of the chemotactic
movement of the immune cells.
Finally, we will use the results to create a visual comparison by transforming
the density field into a particle field, representing the movements of the cells
such that a comparison between the models and the available videos of the
real laboratory experiment can be made.
Firstly, we will restate the necessary informations from Section 1.5 for the
discretization.

3.1 General Model of the OOC

The domain consists of the two dimensional left chamber Ωl := [0, Lx]× [0, Ly]

and right chamber Ωr := [Lx + L, 2Lx + L] × [0, Ly] connected with m one
dimensional channels Ωck := [Lx, Lx+L]×{yk} , where Lx, Ly, L > 0 are based
on the geometry of the chip (see Section 1.5) and yk ∈ [0, Ly] indicates the
position of the k-th channel.
Also let δCk

l = {Lx}× [yk, yk +σ] and δCk
r = {Lx+L}× [yk, yk +σ] be the border

of the interface between the two and one dimensional domains and σ ∈ R>0

the width of the interface.
The outer boundary of the domains not interfacing the channels are indicated
as δΩl, and δΩr.
The underlying partial differential equation system in the two dimensional
domain is 

∂tT = DT∆T − λT (ω)T,

∂tM = DM∆M − div (f (M,φ)) ,

∂tφ = Dφ∆φ+ αφT − βφφ,

∂tω = Dω∆ω + αωM − βωω,

(3.1)
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with diffusion coefficients DT , DM , Dφ, Dω > 0 and growth rate and decay rate
of chemicals αφ, αω, βφ, βω > 0. The density quantities are tumour cell density
T , immune cells (macrophages) M , the chemoattractant density φ which is
produced by the tumour cells and influencing the movements of the immune
cells and the cytokine density ω, produced by the immune cells, acting as a
chemical killer of tumour cells.
The functions f := f̂M with f̂ = χ∇φ and λT (ω) representing, respectively,
the chemotactic sensitivity of immune cells and the decay rate of cancer cells
under the action of immune cells, with cellular drift velocity k1 > 0, receptor
dissociation constant k2 > 0, killing efficiency coefficient kω1 > 0 and kω2 > 0.
In Chapter 1.6 we have presented a variety of different functions f̂ , i.e chemo-
tactic convection terms, each representing an hypothesis for the drivers of
cell movement in dependence of the chemoattractant, and each increasing in
complexity.
The boundary conditions used to simulate the laboratory experiment on the
chip are (1.42), (1.44). We recall that this is due to the fact that the available
data for this experiment are only available in form of a video crop with open
boundaries (see Figure 1.8) but in this numerical simulation we will restrict
ourselves to no-flux Neumann boundary conditions at the outer boundaries
of Ωl and Ωr:

∂T

∂n
|(x,y)∈δΩ\δCk =

∂M

∂n
|(x,y)∈δΩ\δCk =

∂φ

∂n
|(x,y)∈δΩ\δCk =

∂ω

∂n
|(x,y)∈δΩ\δCk = 0. (3.2)

At the interfaces δCk
l and δCk

r we have Kedem-Katchalsky (KK) interface con-
ditions which we have discussed in Section 1.4.
For the one-dimensional channels Ωck we have the parabolic equation (1.46),
which is the one-dimensional version of (3.1)

∂tTc = DT∂xxTc − λT (ωc)Tc,

∂tMc = DM∂xxMc − ∂xfc

∂tφc = Dφ∂xxφc + αφTc − βφφc,

∂tωc = Dω∂xxωc + αωMc − βωωc,

(3.3)

with appropriate initial conditions.
Because both boundaries of the one-dimensional channels are interface bound-
ary conditions, we require KK-interface boundary conditions compatible with
the ones used for the two-dimensional problem.
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For the hyperbolic model (1.47) we have

∂tTc + ∂xv
T
c = −λT (ω)Tc,

∂tv
T
c + DT

τT
∂xTc = −vTc

τT
,

∂tωc = Dωc∂xxωc + αωMc − βcωc,

∂tMc + ∂xv
M
c = 0,

∂tv
M
c +

DMc
τM

∂xMc = fc−vMc
τM

,

∂tφc = Dφc∂xxφc + αφTc − βφφc,

(3.4)

where fc = f̂cMc and with vTc and vMc , respectively, which are the average flux
of the tumour cells Tc and immune cells Mc in the channels with relaxation
time τT , τM ∈ R≥0.
Also here KK-interface boundary conditions (1.42), (1.44) are required for the
flux v.

3.2 Generalized Model of OOC

For the sake of simplicity, we omit the super/subscript l, c, r for left, central
and right respectively, and only use them when necessary. We rewrite the
two dimensional model (3.1) as a general 2D-doubly-parabolic system with
source term g as:  ∂tu = Du∆u− divf + g(x, y, t, u)

∂tφ = Dφ∆φ+ αu− βφ,
(3.5)

with u as the density of individuals and φ the concentration of chemoattrac-
tant. From now on, the two components of the drift term f := f̂u will be
indicated as:

f (x, y, t) :=

 fx (x, y, t)

f y (x, y, t)

 =

 f̂x (x, y, t)

f̂ y (x, y, t)

u(x, y, t) ∈ R2. (3.6)

The initial conditions are indicated as u(0, x, y) = u0(x, y), for (x, y) ∈ Ω,

φ(0, x, y) = φ0(x, y), for (x, y) ∈ Ω
(3.7)
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with no-flux Neumann boundary conditions
∂u

∂n
(t, x, y)

∣∣∣∣
δΩ\δCk

= 0,

f(t, x, y) · n|δΩ\δCk = 0

(3.8)

and outer normal n ∈ R2 of δΩ \ δCk.
For the Kedem-Katchalsky (KK) interface conditions (1.42), (1.44) at the in-
terface boundaries δCk

l , δCk
r we do not need to differentiate between using

the one dimensional parabolic equation (3.3) and the hyperbolic model (3.4)

• two-dimensional KK-interface conditions for left chamber δCk
l

Du∂xul (Lx, y, t)− fxl (Lx, y, t) = K (uc (0, t)− ul(Lx, y, t)) , (3.9)

with y ∈ [yk, yk + σ] and K ∈ R≥0.

• two-dimensonal KK-interface conditions for right chamber δCk
r

Du∂xur (Lx + L, y, t)− fxr (Lx + L, y, t) = K (ur(Lx + L, y, t)− uc (L, t)) ,

(3.10)
with y ∈ [yk, yk + σ] and K ∈ R≥0,

which can also be used for the quantity φ.

In the one-dimensional channel we rewrite the one dimensional-doubly-parabolic
system (1.46) in the more general form: ∂tuc = Duc∂xxuc − ∂xfc + gc,

∂tφc = Dφ∂xxφc + αφuc − βφφc
(3.11)

and the one dimensional hyperbolic-parabolic system (1.47) rewrites as:
∂tuc + ∂xvc = g(t, x),

∂tvc + λ2
c∂xuc = 1

τ
(−vc + fc) ,

∂tφc = Dφc∂xxφc + αcuc − βcφc,

(3.12)

with fc = f̂cuc and diffusion coefficient Du = λ2
cτ with relaxation time τ ∈ R≥0.

The initial conditions for both models are uc(0, x) = uc0(x), for x ∈ Ωc,

φc(0, x) = φc0(x), for x ∈ Ωc

(3.13)
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with an additional initial condition for the flux vc(0, x) = vc0(x) which we set
vc0(x) = 0.
For the interface boundary conditions we need to differentiate between the
one-dimensional parabolic (3.11) and the hyperbolic equation (3.12)

• (parabolic) one-dimensional KK-interface conditions for δΩl
ck

= {0}

Du∂xuc(t, 0)− fc(t, 0) = Kk

(
uc(t, 0)σ −

∫ yk+σ

yk

ul(t, Lx, y)dy

)
. (3.14)

• (parabolic) one-dimensional KK-interface conditions for δΩr
ck

= {L}

Du∂xuc(t, L)− fc(t, L) = Kk

(∫ yk+σ

yk

ur(t, Lx + L, y)dy − uc(t, L)σ

)
.

(3.15)

• (hyperbolic) one-dimensional KK-interface for δΩl
ck

= {0} and δΩr
ck

=

{L}

vc(t, 0) = Kk

(∫ yk+σ

yk

ul(t, Lx, y)dy − uc(t, 0)σ

)
,

vc(t, L) = −Kk

(∫ yk+σ

yk

ur(t, Lx + L, y)dy − uc(t, L)σ

)
.

(3.16)

An important property of the parabolic equation (3.5) is monotonicity.
On the other hand, for hyperbolic equation (3.12) it is shown in [108] that
for linear convection term fc = auc and linear source term gc = buc, the
monotonicity is only given under the condition∣∣∣ a

λc

∣∣∣−b ≤ 1 (3.17)

in order for the quantity u to be non-negative. A negative u would lead to
non-physical solutions and flawed dynamics.

3.2.1 Finite Difference Scheme of OOC

We start with the proper discretization of the computational domain.
For the sake of simplicity, we shift the interval of the domains such that
Ωl = Ωr := [0, Lx] × [0, Ly] and Ωck := [0, L] for Lx, Ly, L > 0 and discretize by
setting xi := i4x, yj := j4y, tn := n4t with i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1,
n = 0, . . . ,M such that xNx+1 = Lx and yNy+1 = Ly.
For the discretization of the k one-dimensional channels Ωck we have xi :=

i4x with i = 0, . . . , N + 1 such that xN+1 = L.
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The values of uli,j and uri,j at the interfaces at δCk
l = {Lx} × [yk, yk + σk] and

δCk
r = {0} × [yk, yk + σk] with channel width σk are set at ulNx+1,j

, ur0,j with
j = jak , . . . , jbk , yk = jak4y and σk := (jbk − jak).
For the one-dimensional parabolic equation (3.11), a reaction-diffusion-convection
equation, a finite difference scheme can be used, which we have already dis-
cussed in Section 2.6 We can directly apply the Crank-Nicolson-CS(IMEX)
scheme to obtain

un+1
i = uni +D 4t

4x2

[
un+1
i+1 −2un+1

i +un+1
i−1

2
+

uni+1−2uni +uni−1

2

]
− 4t

24x

(
f̂ni+1u

n
i+1 − f̂ni−1u

n
i−1

)
+4t

2

(
gn+1
i + gni

)
(3.18)

and stability condition (see table 2.3)

4t
4x2 ≤ 1

D
,

4x ≤ 2D

max
i,j
|f̂ni,j |

.
(3.19)

Similarly we can use the Crank-Nicolson-CS (IMEX) scheme (2.161) on (3.5)

un+1
i,j = uni,j +D4t

2

[
(uni+1,j−2uni,j+u

n
i−1,j)

4x2 +
(uni,j+1−2uni,j+u

n
i,j−1)

4y2

]
+D4t

2

[
(un+1
i+1,j−2un+1

i,j +un+1
i−1,j)

4x2 +
(un+1
i,j+1−2un+1

i,j +un+1
i,j−1)

4y2

]
− 4t

24x

(
fx,ni+1,j − f

x,n
i−1,j

)
− 4t

24y

(
f y,ni,j+1 − f

y,n
i,j−1

)
+4t

2

(
gn+1
i,j + gni,j

)
(3.20)

with stability conditions (2.163)

D (µx + µy) ≤ 1,

4t ≤ D 4y2

max
i,j

f̂x,ni,j 4y+max
i,j

f̂y,ni,j 4x
+D 4x2

max
i,j

f̂x,ni,j 4y+max
i,j

f̂y,ni,j 4x
.

(3.21)

Although these stable schemes are applicable, they are insufficient for chemo-
tactic problems since the convection term is always extremely dominant com-
pared to diffusion, hence we are dealing with very large Peclet numbers Pe.
This forces us to use very small time step sizes 4t in order to satisfy stability
conditions. As we have seen in Section 2.6, we can add artificial viscosity
in order to ease the stability restriction. We can take advantage of the spe-
cial form of the flux function f = uf̂ with f̂ independent of u, and instead of

adding the artificial viscosity term 4x
2
∂xx

(
uf̂
)

, add 4x
2
∂xx

(
u|f̂ |

)
and obtain
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the modified Crank-Nicolson-CS(IMEX) equation

un+1
i = uni +Dµx

[
un+1
i+1 −2un+1

i +un+1
i−1

2
+

uni+1−2uni +uni−1

2

]
− λx

2

(
uni+1f̂

n
i+1 − uni−1f̂

n
i−1

)
+λx

2

(
|f̂ni+1|uni+1 − 2|f̂ni |uni + |f̂ni−1|uni−1

)
+ 4t

2

(
gn+1
i + gni

)
,

(3.22)
for the one-dimensional parabolic equation with stability condition

µx ≤
1

D +4xmax
i
|f̂ni |

(3.23)

2D-parabolic scheme

For the two-dimensional parabolic equation with µx := 4t
4x2 , µy := 4t

4y2 , λx :=
4t
4x , λy := 4t

4y we have the finite difference scheme

un+1
i,j = uni,j +Dµx

[
(uni+1,j−2uni,j+u

n
i−1,j)

2
+

(un+1
i+1,j−2un+1

i,j +un+1
i−1,j)

2

]
+Dµy

[
(uni,j+1−2uni,j+u

n
i,j−1)

2
+

(un+1
i,j+1−2un+1

i,j +un+1
i,j−1)

2

]
−λx

2

(
f̂x,ni+1,ju

n
i+1,j − f̂

x,n
i−1,ju

n
i−1,j

)
− λy

2

(
f̂ y,ni,j+1u

n
i,j+1 − f̂

y,n
i,j−1ui,j−1

)
+λx

2

(
|f̂x,ni+1,j|uni+1,j − 2|f̂x,ni,j |uni,j + |f̂x,ni−1,j|uni−1,j

)
+λy

2

(
|f̂ y,ni,j+1|uni,j+1 − 2|f̂ y,ni,j |uni,j + |f̂ y,ni,j−1|uni,j−1

)
+4t

2
(g(tn+1, xi, yj) + g(tn, xi, yj))

(3.24)
with stability condition, derived similarly to equation (2.163) by the mono-
tonicity condition (2.32)

4t ≤ 1

D
4x2 + D

4y2 +

(
max
i,j
|f̂x,ni,j |

4x +
max
i,j
|f̂y,ni,j |

4y

) . (3.25)

In the upcoming numerical simulations, we will use the schemes (3.24) and
(3.22) for the parabolic equations of the model (3.1) and (3.3).

1D-hyperbolic scheme

For the hyperbolic model (3.4) we will use the (AHO)2 scheme (2.151) on the
general hyperbolic equation (3.12) with arbitrary relaxation time τ ∈ R≥0,
which is quite suitable for the numerical simulation since the time scope of
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the biological models are quite long compared to simulations in fluid dynam-
ics and we can benefit from its asymptotic higher order. This means

un+1
i = uni + λc

4t
24x

(
uni+1 − 2uni + uni−1

)
−
(
4t

24x −
4t

4λcτ

) (
vni+1 − vni−1

)
+ 4t

4λcτ

(
fni−1 − fni+1

)
+ 4t

4

(
gni+1 + 2gni + gni−1

)
,

vn+1
i = vni − λ2

c
4t

24x

(
uni+1 − uni−1

)
+ λc

4t
24x

(
vni+1 − 2vni + vni−1

)
−4t

4τ

(
vni+1 + 2vni + vni−1

)
+ 4t

4τ

(
fni+1 + 2fni + fni−1

)
−λc4t4

(
gni+1 − gni−1

)
(3.26)

with stability conditions (2.135)

4x ≤ 4λcτ,

4t ≤ 44xτ
4x+4λcτ

.
(3.27)

An important additional condition is the analytical monotonicity condition
(3.17) which needs to be fulfilled to guarantee positive solutions for all times.
The monotonicity condition with functions f̂c and ĝc such that fc = f̂cu and
gc = ĝcu is ∣∣∣ f̂c

λc

∣∣∣−ĝc ≤ 1 (3.28)

As we will see later, the monotonicity condition is quite restrictive for the
choice of the chemotactic functions f̂c and source term ĝc and must always
be considered in the numerical simulation in order to avoid non-physical so-
lutions.

We showed in (1.36) the connection between the hyperbolic (3.4) and parabolic
model (3.3) that both models have the same stationary solution and that in
the limit of the relaxation time τ → 0, the parabolic equation can be obtained
from the hyperbolic one.

For consistency this requires the model parameter λc ∈ R≥0 to be λc :=
√

Du
τ

.

3.2.2 Positivity Mass-Preserving Boundary Conditions

For the non-interface boundary conditions we have no-flux Neumann bound-
ary conditions (3.8). As we have already worked out, the parabolic equations
(3.1) and (3.3) with source term g = 0 do have the mass preservation property
(1.39), (1.40) and in Proposition 2.8.2 we can derive mass preserving bound-
ary conditions, hence for δΩ \ δCk we have the mass-preserving boundary
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conditions for the left and right boundaries

un+1
0,j = un0,j +Dµx

[(
un1,j − un0,j

)
+
(
un+1

1,j − un+1
0,j

)]
+Dµy

[
(un0,j+1−2un0,j+u

n
0,j−1)

2
+

(un+1
0,j+1−2un+1

0,j +un+1
0,j−1)

2

]
−λx

(
f̂x,n0,j u

n
0,j + f̂x,n1,j u

n
1,j

)
− λy

2

(
f̂ y,n0,j+1u

n
0,j+1 − f̂

y,n
0,j−1u0,j−1

)
+λx

(
|f̂x,n1,j |un1,j − |f̂

x,n
0,j |un0,j

)
+λy

2

(
|f̂ y,n0,j+1|un0,j+1 − 2|f̂ y,n0,j |un0,j + |f̂ y,n0,j−1|un0,j−1

)
+4t

2

(
gn+1

0,j + gn+1
0,j

)
,

un+1
Nx+1,j = unNx+1,j +Dµx

[(
unNx,j − u

n
Nx+1,j

)
+
(
un+1
Nx,j
− un+1

Nx+1,j

)]
+Dµy

[
(unNx+1,j+1−2unNx+1,j+u

n
Nx+1,j−1)

2
+

(un+1
Nx+1,j+1−2un+1

Nx+1,j+u
n+1
Nx+1,j−1)

2

]
+λx

(
f̂x,nNx,j

unNx,j + f̂x,nNx+1,ju
n
Nx+1,j

)
−λy

2

(
f̂ y,nNx+1,j+1u

n
Nx+1,j+1 − f̂

y,n
Nx+1,j−1uNx+1,j−1

)
+λx

(
|f̂x,nNx,j

|unNx,j − |f̂
x,n
Nx+1,j|unNx+1,j

)
+λy

2

(
|f̂ y,nNx+1,j+1|unNx+1,j+1 − 2|f̂ y,nNx+1,j|unNx+1,j + |f̂ y,nNx+1,j−1|unNx+1,j−1

)
+4t

2

(
gn+1
Nx+1,j + gnNx+1,j

)
,

(3.29)
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for [0, yj] ∈ δΩ \ δCk and [Lx, yj] ∈ δΩ \ δCk and for the top and bottom bound-
aries

un+1
i,0 = uni,0 +Dµx

[
(uni+1,0−2uni,0+uni−1,0)

2
+

(un+1
i+1,0−2un+1

i,0 +un+1
i−1,0)

2

]
+Dµy

[(
uni,1 − uni,0

)
+
(
un+1
i,1 − un+1

i,0

)]
−λx

2

(
f̂x,ni+1,0u

n
i+1,0 − f̂

x,n
i−1,0u

n
i−1,0

)
− λy

(
f̂ y,ni,1 u

n
i,1 + f̂ y,ni,0 ui,0

)
+λx

2

(
|f̂x,ni+1,0|uni+1,0 − 2|f̂x,ni,0 |uni,0 + |f̂x,ni−1,0|uni−1,0

)
+λy

(
|f̂ y,ni,1 |uni,1 − |f̂

y,n
i,0 |uni,0

)
+4t

2

(
gn+1
i,0 + gni,j

)
,

un+1
i,Ny+1 = uni,Ny+1 +Dµx

[(
uni+1,Ny+1−2uni,Ny+1+uni−1,Ny+1

)
2

+

(
un+1
i+1,Ny+1−2un+1

i,Ny+1+un+1
i−1,Ny+1

)
2

]
+Dµy

[(
uni,Ny − u

n
i,Ny+1

)
+
(
un+1
i,Ny
− un+1

i,Ny+1

)]
−λx

2

(
f̂x,ni+1,Ny+1u

n
i+1,Ny+1 − f̂

x,n
i−1,Ny+1u

n
i−1,Ny+1

)
+λy

(
f̂ y,ni,Nyu

n
i,Ny

+ f̂ y,ni,Ny+1ui,Ny+1

)
+λx

2

(
|f̂x,ni+1,Ny+1|uni+1,Ny+1 − 2|f̂x,ni,Ny+1|uni,Ny+1 + |f̂x,ni−1,Ny+1|uni−1,Ny+1

)
+λy

(
|f̂ y,ni,Ny |u

n
i,Ny
− |f̂ y,ni,Ny+1|uni,Ny+1

)
+4t

2

(
gn+1
i,Ny+1 + gni,Ny+1

)
,

(3.30)
at [xi, 0] ∈ δΩ \ δCk and [xi, Ly] ∈ δΩ \ δCk.
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For the corners (0, 0), (Lx, 0), (0, Ly), (Lx, Ly) we have

un+1
0,0 = un0,0 +Dµx

[(
un1,0 − un0,0

)
+
(
un+1

1,0 − un+1
0,0

)]
+Dµy

[(
un0,1 − un0,0

)
+
(
un+1

0,1 − un+1
0,0

)]
−λx

(
f̂x,n1,0 u

n
1,0 + f̂x,n0,0 u

n
0,0

)
− λy

(
f̂ y,n0,1 u

n
0,1 + f̂ y,n0,0 u0,0

)
+λx

(
|f̂x,n1,0 |un1,0 − |f̂

x,n
0,0 |un0,0

)
+λy

(
|f̂ y,n0,1 |un0,1 − |f̂

y,n
0,0 |un0,0

)
+4t

2

(
gn+1

0,0 + gn0,0
)
,

un+1
Nx+1,0 = unNx+1,0 +Dµx

[(
unNx,0 − u

n
Nx+1,0

)
+
(
un+1
Nx,0
− un+1

Nx+1,0

)]
+Dµy

[(
unNx+1,1 − unNx+1,0

)
+
(
un+1
Nx+1,1 − u

n+1
Nx+1,0

)]
+λx

(
f̂x,nNx,0

unNx,0 + f̂x,nNx+1,0u
n
Nx+1,0

)
−λy

(
f̂ y,nNx+1,1u

n
Nx+1,1 + f̂ y,nNx+1,0u0,0

)
+λx

(
|f̂x,nNx,0

|unNx,0 − |f̂
x,n
Nx+1,0|unNx+1,0

)
+λy

(
|f̂ y,nNx+1,1|unNx+1,1 − |f̂

y,n
Nx+1,0|unNx+1,0

)
+4t

2

(
gn+1
Nx+1,0 + gnNx+1,0

)
,

un+1
0,Ny+1 = un0,Ny+1 +Dµx

[(
un1,Ny+1 − un0,Ny+1

)
+
(
un+1

1,Ny+1 − u
n+1
0,Ny+1

)]
+Dµy

[(
un0,Ny − u

n
0,Ny+1

)
+
(
un+1

0,Ny
− un+1

i0,Ny+1

)]
−λx

(
f̂x,n1,Ny+1u

n
1,Ny+1 + f̂x,n0,Ny+1u

n
0,Ny+1

)
+λy

(
f̂ y,n0,Ny

un0,Ny + f̂ y,n0,Ny+1u0,Ny+1

)
+λx

(
|f̂x,n1,Ny+1|un1,Ny+1 − 2|f̂x,n0,Ny+1|un0,Ny+1

)
+λy

(
|f̂ y,n0,Ny

|un0,Ny − |f̂
y,n
0,Ny+1|un0,Ny+1

)
+4t

2

(
gn+1

0,Ny+1 + gn0,Ny+1

)
,

(3.31)
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un+1
Nx+1,Ny+1 = unNx+1,Ny+1 +Dµx

[(
unNx,Ny+1 − unNx+1,Ny+1

)
+
(
un+1
Nx,Ny+1 − u

n+1
Nx+1,Ny+1

)]
+Dµy

[(
unNx+1,Ny

− unNx+1,Ny+1

)
+
(
un+1
Nx+1,Ny

− un+1
Nx+1,Ny+1

)]
+λx

(
f̂x,nNx,Ny+1u

n
Nx,Ny+1 + f̂x,nNx+1,Ny+1u

n
Nx+1,Ny+1

)
+λy

(
f̂ y,nNx+1,Ny

unNx+1,Ny
+ f̂ y,nNx+1,Ny+1uNx+1,Ny+1

)
+λx

(
|f̂x,nNx,Ny+1|unNx,Ny+1 − |f̂

x,n
Nx+1,Ny+1|unNx+1,Ny+1

)
+λy

(
|f̂ y,nNx+1,Ny

|unNx+1,Ny
− |f̂ y,nNx+1,Ny+1|unNx+1,Ny+1

)
+4t

2

(
gn+1
Nx+1,Ny+1 + gnNx+1,Ny+1

)
.

(3.32)

3.2.3 Discretized Transmission Conditions at Interfaces

The only boundary conditions for our models that are missing, are the inter-
face boundary conditions (3.9), (3.10), (3.14), (3.15) for the parabolic models
and (3.16) for the hyperbolic model, which all need to be discretized.
In order to keep the equidistant mesh grid sizes, we require for the channel
width σ to be a multiple of the meshgrid size 4y such that σ := m4y for
m ∈ N.
Furthermore, for the interfaces δCk

l and δCk
r we set the (i, j) indices such

that uNx+1,j with j = jak , jak + 1, . . . , jbk −1, jbk with the y-coordinate of the k-th
channel to be at yk = jak4y.

2D-parabolic

For the KK-interface boundary condition for the left chamber (3.9) we need
to discretize

Du∂xul (Lx, y, t)− fxl (Lx, y, t) = K (uc (0, t)− ul(Lx, y, t)) . (3.33)

As shown in Proposition 2.8.2, we can obtain mass-preserving boundary con-
ditions by using a central difference to get a ghost value, which included in
the finite difference scheme, gives us a mass-preserving boundary conditions,
hence with (3.33)

unNx+2,j = unNx,j + 2
4x
Du

K
(
un0 − unNx+1,j

)
+

24x
Du

fx,nNx+1,j (3.34)
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and inserted into the two-dimensional parabolic scheme (3.24) gives us the
interface boundary condition at δCk

l

un+1
Nx+1,j = unNx+1,j +Dµx

[(
unNx,j − u

n
Nx+1,j

)
+
(
un+1
Nx,j
− un+1

Nx+1,j

)]
+Dµy

[
(unNx+1,j+1−2unNx+1,j+u

n
Nx+1,j−1)

2
+

(un+1
Nx+1,j+1−2un+1

Nx+1,j+u
n+1
Nx+1,j−1)

2

]
+λx

(
f̂x,nNx,j

unNx,j + f̂x,nNx+1,ju
n
Nx+1,j

)
−λy

2

(
f̂ y,nNx+1,j+1u

n
Nx+1,j+1 − f̂

y,n
Nx+1,j−1uNx+1,j−1

)
+λx

(
|f̂x,nNx,j

|unNx,j − |f̂
x,n
Nx+1,j|unNx+1,j

)
+λy

2

(
|f̂ y,nNx+1,j+1|unNx+1,j+1 − 2|f̂ y,nNx+1,j|unNx+1,j + |f̂ y,nNx+1,j−1|unNx+1,j−1

)
+4t

2

(
gn+1
Nx+1,j + gnNx+1,j

)
+
4x
4t

Kk

((
un0 − unNx+1,j

)
+
(
un+1

0 − un+1
Nx+1,j

))
,︸ ︷︷ ︸

KK-transmission term
(3.35)

for j = jak , . . . , jbk
For the right interface boundary conditions we proceed in the same way.

Du∂xur (Lx + L, y, t)− fxr (Lx + L, y, t) = K (ur(Lx + L, y, t)− uc (L, t)) , (3.36)

to get

un−1,j = un1 − 2
4x
Du

K
(
un0,j − unN+1

)
− 24x

Du

fx,n0,j (3.37)

and obtain at the interface boundary on the right chamber δCk
r

un+1
0,j = un0,j +Dµx

[(
un1,j − un0,j

)
+
(
un+1

1,j − un+1
0,j

)]
+Dµy

[
(un0,j+1−2un0,j+u

n
0,j−1)

2
+

(un+1
0,j+1−2un+1

0,j +un+1
0,j−1)

2

]
−λx

(
f̂x,n1,j u

n
1,j + f̂x,n1,j u

n
1,j

)
− λy

2

(
f̂ y,n0,j+1u

n
0,j+1 − f̂

y,n
0,j−1u0,j−1

)
+λx

(
|f̂x,n1,j |un1,j − |f̂

x,n
0,j |un0,j

)
+λy

2

(
|f̂ y,n0,j+1|un0,j+1 − 2|f̂ y,n,j |uni,j + |f̂ y,n0,j−1|un0,j−1

)
+4t

2

(
gn+1

0,j + gn0,j
)

+
4x
4t

Kk

((
unN+1 − un0,j

)
+
(
un+1
N+1 − u

n+1
0,j

))
,︸ ︷︷ ︸

KK-transmission term
(3.38)
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for j = jak , . . . , jbk .

1D-parabolic

In a very similar manner we can derive the KK-interface boundary conditions
(3.14), (3.15) for the finite difference scheme (3.22) for the one-dimensional
parabolic equation (3.11)

Du∂xuc(t, 0)− fc(t, 0) = Kk

(
uc(t, 0)σ −

∫ yk+σ

yk

ul(t, Lx, y)dy

)
,

Du∂xuc(t, L)− fc(t, L) = Kk

(∫ yk+σ

yk

ur(t, Lx, y)dy − uc(t, 0)σ

)
.

(3.39)

We must remark that the integral expressions in (3.39) need to be discretized
such that ∫ yk+σ

yk

ul(tn, Lx, y)dy ≈ 4y
jb1∑
ja1

unNx+1,j. (3.40)

Different quadrature formulas are not compatible with the mass-preserving
boundary conditions by using central differences and the discrete integral
equation at (3.45) and lead to inconsistency at the interfaces.
We then obtain the ghost values

un−1 = un1 − 24x
D
Kk

σun0 −4y jb1∑
ja1

unlNx+1,j

− 24x
D
fn0 ,

unN+2 = unN + 24x
D
Kk

4y jb1∑
ja1

unrNx+1,j
− σunN+1

+ 24x
D
fnN+1

(3.41)

and inserted into the scheme (3.22)

un+1
0 = un0 +Dµx

[
un+1

1 − un+1
0 + un1 − un0

]
− λx (fn1 + fn0 )

+4t
2

(
gn+1

0 + gn0
)

+
4x
4t

Kk

4y jb1∑
ja1

(
unlNx+1,j

+ un+1
lNx+1,j

)
− σ

(
un0 + un+1

0

)
︸ ︷︷ ︸

KK-transmission term

un+1
N+1 = unN+1 +Dµx

[
un+1
N − unN+1 + unN − unN+1

]
+ λx

(
fnN + fnN+1

)
+4t

2

(
gn+1
N+1 + gnN+1

)
,

+
4x
4x

Kk

4y jb1∑
ja1

(
unr0,j + un+1

r0,j

)
− σ

(
un+1
N+1 + unN+1

) .

︸ ︷︷ ︸
KK-transmission term

(3.42)
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We can notice that (3.42) contains integral terms. A natural way is to use a
numerical quadrature as presented in Section 2.8.1.
We remark that not any numerical quadrature can be used.
In order to preserve the mass-preserving attribute of the finite difference
schemes, we have to consistently use the same numerical quadrature method
that has been used to derive the KK-interface boundary conditions (3.34),
(3.36) and (3.41). Otherwise we would include an additional integration er-
ror, which would grow over time.

1D-hyperbolic

For the finite difference scheme for the hyperbolic model (3.26) we firstly
derive the KK-interface boundary conditions for the flux v with (3.16)

vn0 = Kk

4y jb1∑
ja1

unlNx+1,j
− un0σ

 ,

vnN+1 = −Kk

4y jb1∑
ja1

unr0,j − u
n
N+1σ

 .

(3.43)

As we can see, also (3.43) contains integral terms.
In the case of the one-dimensional parabolic model, the interface boundary
values un+1

0 , un+1
N+1 in (3.42) were obtained through the KK-interface boundar

conditions (3.41). However, in the hyperbolic case, we cannot obtain the
missing interface boundary conditions for un+1

0 and un+1
N+1 with just the KK-

interface boundary conditions (3.43) which are already used to determine
the interface boundary conditions for the flux vn0 , v

n
N+1.

For this reason we derive them by using the discrete integral with the condi-
tion

In+1 − In = 0, (3.44)

as we have used in (2.99) for mass-preserving boundary conditions and in the
derivation of the AHO schemes boundary conditions.
The difference now is that we do not just require mass preservation in one
domain but in Ωl ∪ Ωr ∪ Ωc.
For the numerical integration of higher order, we refer to [29], but in the
following we will use the two-dimensional trapezoidal rule which is defined

107



Generalized Model of OOC

as ∫
Ω

F (x, y)dydx ≈ 4x4y
4

(
F (x0, y0) + F (xNx+1, y0) + F (x0, yNy+1)

+F (xNx+1, yNy+1) + 2
Nx∑
i=1

(
F (xi, y0) + F (xi, yNy+1)

)
+2

Ny∑
j=1

(F (x0, yj) + F (xNx+1, yj)) + 4
Nx∑
i=1

Ny∑
j=1

F (xi, yj)
)
.

(3.45)
For the mass-preservation of the whole model in all domains we require

In+1
Ωl
− InΩl + In+1

Ωr
− InΩr + In+1

Ωc
− InΩc = 0. (3.46)

If we apply the trapezoidal rule for all discrete integrals and replace the
discrete values un+1

i,j and un+1
i with the values obtained by the finite difference

schemes (3.22), (3.26), (3.29) the remaining term between the left and right
chamber Ωl, Ωr and one channel Ωc is

4x
2

[
un+1

0 − un0 + λc
4t
4x (un0 − un1 )−

(
4t
4x −

4t
2λcτ

)
(−vn0 − vn1 ) + 4t

2λcτ
(fn0 + fn1 )

]
+4x

2

[
un+1
N+1 − unN+1 + λc

4t
4x

(
unN+1 − unN

)
−
(
4t
4x −

4t
2λcτ

) (
vnN+1 + vnN

)
+ 4t

2λcτ

(
−fnN+1 − fnN

)]
+4x4y

4

2

jb1∑
j=ja1

4t
4x

K
(
un0 − unlNx+1,j

+ un+1
0 − un+1

lNx+1,j

)
+4x4y

4

2

jb1∑
j=ja1

4t
4x

K
(
unN+1 − unr0,j + un+1

N+1 − u
n+1
r0,j

) = 0.

(3.47)
Choosing un+1

0 and un+1
N+1 such that the term (3.47) vanishes, gives us the

following mass-preserving KK-interface boundary conditions for the scheme

108



Generalized Model of OOC

(3.26)

un+1
0 = un0 + λc

4t
4x (un1 − un0 )−

(
4t
4x −

4t
2λcτ

)
(vn0 + vn1 )− 4t

2λcτ
(fn0 + fn1 )

+4t
2

(gn0 + gn1 )

−K 4t
4x4y

jb1∑
j=ja1

(
un0 − unlNx+1,j

+ un+1
0 − un+1

lNx+1,j

)
,

un+1
N+1 = unN+1 + λc

4t
4x

(
unN − unN+1

)
+
(
4t
4x −

4t
2λcτ

) (
vnN + vnN+1

)
+ 4t

2λcτ

(
fnN + fnN+1

)
+4t

2

(
gnN+1 + gnN

)
−K 4t

4x4y
jb1∑

j=ja1

(
unN+1 − unr0,j + un+1

N+1 − u
n+1
r0,j

)
.

(3.48)
With this we conclude the discretization and proceed with the stability anal-
ysis of the interface boundary conditions.
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3.3 Main Results on the Numerical Approxima-

tion of the OOC-model

Before we begin with the numerical simulation, we will verify the correctness
of the discretized permeability conditions (3.35), (3.38), (3.42).
In our stability analysis of our finite difference schemes, we derived suffi-
cient stability criteria by using the maximum principle to ensure stability.
Although such stability conditions are sometimes more restrictive than sta-
bility conditions derived through other means (Matrix analysis), they ensure
non-oscillatory solutions and more importantly, positivity which is crucial in
a biological model where the quantities are densities.
However we have only considered the interior points in our stability analy-
sis and not the stability of the numerical boundary conditions. Often these
stability conditions coincide with the stability conditions of the overall finite
difference schemes but especially by using KK-interface boundary conditions,
a closer look must be taken to ensure stability also at the interface bound-
aries. This study contributes to new results about stability conditions of KK-
interface boundary conditions.

3.3.1 Time Step and Mesh Grid Size Restrictions

1D-parabolic-1D-parabolic

We start by considering two one-dimensional domains Ωl := [0, L1], Ωr :=

[L1, L2] for the one-dimensional parabolic equation

∂tu = D∂xxu− ∂x
(
uf̂
)

(3.49)

and use the finite difference scheme (3.22) where the discretized vector ul
belongs to the left domain Ωl and ur to the right domain Ωr.
As such, the finite difference schemes are

un+1
li

= unli +Dµx

[
un+1
li+1
−2un+1

li
+un+1

li−1

2
+

unli+1
−2unli

+unli−1

2

]
− λx

2

(
unli+1

f̂nli+1
− unli−1

f̂nli−1

)
+λx

2

(
|f̂nli+1

|unli+1
− 2|f̂nli |v

n
i + |f̂nli−1

|unli−1

)
,

un+1
ri

= unri +Dµx

[
un+1
ri+1
−2un+1

ri
+un+1

ri−1

2
+

un+1
ri+1
−2unri+u

n
ri−1

2

]
− λx

2

(
unri+1

f̂nri+1
− unri−1

f̂nri−1

)
+λx

2

(
|f̂nri+1

|unri+1
− 2|f̂nri|u

n
ri

+ |f̂nri−1
|unri−1

)
,

(3.50)
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with homogeneous Neumann boundary condition at the outer boundaries

un+1
l0

= unl0 +D1µx
([
unl1 − u

n
l0

+ un+1
l1
− un+1

l0

])
−λx

(
vn0 f̂

n
l0

+ unl1 f̂
n
l1

)
+ λx

(
unl1|f̂

n
l1
| − unl0|f̂

n
l0
|
)
,

un+1
rN2+1

= unrN2+1
+D2µx

([
unrN2

− unrN2+1
+ un+1

rN2
− un+1

rN2+1

])
+λx

(
unrN2+1

f̂nrN2+1
+ unrN2

f̂nrN2

)
+ λx

(
unrN2
|f̂nrN2
| − unrN2+1

|f̂nrN2+1
|
)

(3.51)
and KK-interface boundary conditions at the inner boundary

un+1
lN1+1

= unlN1+1
+D1µx

(
unlN1
− unlN1+1

+ un+1
lN1
− un+1

lN1+1

)
+λx

(
unlN1+1

f̂nlN1+1
+ unlN1

f̂nlN1

)
+ λx

(
unlN1
|f̂nlN1
| − unlN1+1

|f̂nlN1+1
|
)

+4t4xK
(
unr0 − u

n
lN1+1

+ un+1
r0
− un+1

lN1+1

)
,

un+1
r0

= unr0 +D2µx
(
unr1 − u

n
r0

+ un+1
r1
− un+1

r0

)
−λx

(
unr0 f̂

n
r0

+ unr1 f̂
n
r1

)
+ λx

(
unr1|f̂

n
r1
| − unr0|f̂

n
r0
|
)

+4t4xK
(
unlN1+1

− unr0 + un+1
lN1+1

− un+1
r0

)
.

(3.52)
We recall the stability condition for this method (3.23) is

4t ≤ 4x2

D +4xmax
i
|f̂ni |

. (3.53)

Applying the monotonicity conditions (2.32) for the outer boundary condi-
tions leads to

1−Dµx − λxf̂nl0 − λx|f̂
n
l0
| > 0,

Dµx − λxf̂nl1 + λx|f̂nl1 | > 0
(3.54)

and
1−Dµx + λxf̂

n
rN2+1

− λx|f̂nrN2+1
| > 0,

Dµx + λxf̂
n
rN2

+ λx|f̂nrN2
| > 0,

(3.55)

which gives us the stability conditions at the outer boundaries 4t ≤
4x2

D+24xf̂nl0
, for f̂nl0 ≥ 0

4t ≤ 4x2

D
else

(3.56)
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and  4t ≤
4x2

D−24xf̂nrN2+1

, for f̂nrN2+1
≤ 0

4t ≤ 4x2

D
else.

(3.57)

The stability constraints (3.56), (3.57) at the outer boundary are slightly more
restrictive compared to the stability constraint of the method at the inner
nodes because of the application of the mass-preserving boundary condition.

Although we use a central difference scheme for the convection term ∂x

(
uf̂
)

at the inner points, the derivation of mass-preservation boundary conditions
uses a forward (resp. backward) difference scheme for the convection term.
This leads to the slightly more restrictive stability condition.
Now for the KK-interface boundary condition (3.52) we check the monotonic-
ity condition once again.

1−Dµx + λxf̂
n
lN1+1

− λx|f̂nlN1+1
| − 4t

4xK ≥ 0,

Dµx + λxf̂
n
lN1

+ λx|f̂nlN1
| ≥ 0

(3.58)

and we obtain the stability condition at the inner boundary
4t ≤ 4x2

D+4xK , for f̂nlN1+1
> 0,

4t ≤ 4x2

D+24xf̂nlN1+1
+4xK

, else.


4t ≤ 4x2

D+4xK , for f̂nr0 > 0,

4t ≤ 4x2

D−24xf̂nr0+4xK
, else.

(3.59)
These stability conditions show that the KK-constant K ∈ R>0 does influence
the stability at the interface and must be considered in the choice of an ap-
propriate time step 4t > 0.
In Figure 3.1 the evolution of mass and steady state solution can be see
for the KK-interface boundary conditions connecting two one-dimensional
parabolic equations (3.49). To numerically confirm the correctness of the
derived stability conditions (3.59) for the KK-interface boundary conditions,
we also formulated the finite difference method (3.50) in matrix form Un+1 =

MUn and numerically calculated the spectral radius ρ(M) and the maximum
norm of matrix M for different time steps 4t, which can be seen in Figure
3.2 and confirms the stability condition.
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(a) Steady state solution (b) Evolution of mass

Figure 3.1: Two parabolic equations (3.49) with 4x = 0.01, D = 1, f̂l = −1 and f̂r = 3 and
K = 100 with KK-interface boundary conditions and time step dt satisfying stability condition
(3.59). Mass is preserved at all times. Violation of the stability condition (3.59) and usage of
(3.56), (3.57) instead, leads to blow up.

Figure 3.2: Spectral radius ρ(M) and maximums norm of matrix M of the finite difference
method (3.50) with Un+1 = MUn is depicted for different time steps k · 4topt with 4topt =

4x2

D−24xmaxi f̂n
i +4xK

. This numerically confirms the stability condition (3.59) such that for

time step 4t > 4topt the stability conditions for the KK-interface boundary conditions is
violated and the method is instable.

2D-parabolic-1D-parabolic

If we consider now the interface between a two-dimensional domain Ωl :=

[0, Lx] × [0, Ly] with an one-dimensional domain Ωr := [0, L], for the two-
dimensional parabolic equation

∂tu = D4u− div
(
uf̂
)

(3.60)
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and analyse the monotonicity conditions for the KK-interface boundary con-
ditions

un+1
lNx+1,j

= unlNx+1,j
+Dµx

[(
unlNx,j − u

n
lNx+1,j

)
+
(
un+1
lNx,j
− un+1

lNx+1,j

)]
+Dµy

[(
unlNx+1,j+1

−2unlNx+1,j
+unlNx+1,j−1

)
2

+

(
un+1
lNx+1,j+1

−2un+1
lNx+1,j

+un+1
lNx+1,j−1

)
2

]
+λx

(
f̂x,nNx,j

unlNx,j + f̂x,nNx+1,ju
n
lNx+1,j

)
−λy

2

(
f̂ y,nNx+1,j+1u

n
lNx+1,j+1

− f̂ y,nNx+1,j−1ulNx+1,j−1

)
+λx

(
|f̂x,nNx,j

|unlNx,j − |f̂
x,n
Nx+1,j|unlNx+1,j

)
+λy

2

(
|f̂ y,nNx+1,j+1|unlNx+1,j+1

− 2|f̂ y,nNx+1,j|unlNx+1,j
+ |f̂ y,nNx+1,j−1|unlNx+1,j−1

)
+
4t
4x

Kk

((
unr0 − u

n
lNx+1,j

)
+
(
un+1
r0
− un+1

lNx+1,j

))
︸ ︷︷ ︸

KK-transmission term

un+1
r0

= unr0 +D2µx
(
unr1 − u

n
r0

+ un+1
r1
− un+1

r0

)
,

+λx

(
unr0 f̂

n
0 + unr1 f̂

n
1

)
+ λx

(
ur1|f̂n1 | − ur0 |f̂n0 |

)
+
4t
4x

Kk

4y jb1∑
ja1

(
unlNx+1,j

+ un+1
lNx+1,j

)
− σ

(
unr0 + un+1

r0

) ,

︸ ︷︷ ︸
KK-transmission term

(3.61)
for j = jak , . . . jbk . For the interface boundary condition at un+1

lNx+1,j
we see that

monotonicity is preserved when

1−Dµx −Dµy + λxf̂
x,n
Nx+1,j − λx|f̂

x,n
Nx+1,j| − λy|f̂

y,n
Nx+1,j| −

4t
4xK > 0, (3.62)

which gives use the stability condition
4t ≤ 1

D
(

1
4x2 + 1

4y2

)
+

2|f̂x,nNx+1,j |
4x +

|f̂y,nNx+1,j |
4y + K

4x

for f̂x,nNx+1,j < 0,

4t ≤ 1

D
(

1
4x2 + 1

4y2

)
+
|f̂y,n
Nx+1,j

|
4y + K

4x

else,
(3.63)

for the left side of the interface, and for the right side of the interface

1−Dµx + λxf̂
n
0 − λx|f̂n0 | −

4t
4xKσ

⇒

 4t ≤
4x2

D+4xσK , for f̂n0 > 0,

4t ≤ 4x2

D+24x|f̂n0 |+4xσK
else.

(3.64)
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The stability condition (3.63) is similar to the one-dimensional one (3.59)
where the KK-constant K influences the stability, whereas the stability condi-
tion (3.64) is not only influenced by the KK-constantK but also by the channel
width σ, which must be taken care of accordingly.
In Figure 3.3 a visual representation of the time step restriction (3.64) for
varying K and channel width σ is presented. We summarize the results in

(a) (b)

Figure 3.3: Time step restriction (3.64) 4t for the one-dimensional parabolic interface
boundary condition with4x = 0.01,4y = 0.1 and D = 5 for different K and channel width σ,
f̂ = 0. As expected the time step 4t must be chosen smaller when either K or σ increases.

the following two propositions.

Proposition 3.3.1 (1D-1D Parabolic KK-interface boundary stability condi-
tions). Let the parabolic convection-diffusion equation (3.49), defined at the
one-dimensional domains Ωr = [0, L1], Ωr = [L1, L2] and homogeneous Neu-
mann boundary conditions at the outer boundaries {0} and {L2} be connected
at the boundary interface {L1} defined as KK-interface boundary condition
with KK-parameter K ∈ R>0. Furthermore let the finite difference scheme
(3.50), consistent to (3.49), be complemented with homogeneous Neumann
boundary conditions (3.51) each at the outer boundaries and with the dis-
cretized KK-interface boundary conditions at the inner boundary (3.52).
Then the complete finite difference schemes stability conditions at the inner
points (3.49) and outer boundaries (3.56) and (3.57) complemented with the
additional stability constraint for the KK-interface boundary conditions are

KK-interface boundary condition at Ωl


4t ≤ 4x2

D+4xK , for f̂nN1+1 > 0,

4t ≤ 4x2

D+24xf̂nN1+1+4xK
, else

(3.65)
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and

KK-interface boundary condition at Ωr

 4t ≤
4x2

D+4xK , for f̂n0 > 0,

4t ≤ 4x2

D−24xf̂n0 +4xK
, else.

(3.66)

Proposition 3.3.2 (2D-1D Parabolic KK-interface boundary stability condi-
tions). Let the parabolic convection-diffusion equations,(3.60), defined at the
Ωl = [0, Lx]× [0, Ly], and (3.60) defined at Ωr = [Lx, L] with homogeneous Neu-
mann boundary conditions at the outer boundaries δoutΩl = ΩlrδinterfaceΩl and
δoutΩr = {L} be connected at the boundary interface δinterfaceΩl = {Lx} ×
[C,C + σ] and δinterfaceΩr = {0} defined as KK-interface boundary condi-
tion with KK-parameter K ∈ R>0, and corridor width σ > 0 with 0 < C <
Ly − σ. Furthermore let the finite difference scheme (3.50), consistent to
(3.49), (3.24) consistent to (3.60) be complemented with homongeous Neu-
mann boundary conditions (3.51), (3.29) each at the outer boundaries and
with the discretized KK-interface boundary conditions at the inner boundary
(3.61).
Then the complete finite difference schemes stability conditions at the inner
points (3.23), (3.25) complemented with the additional stability constraint for
the KK-interface boundary conditions are

δinterfaceΩl


4t ≤ 1

D
(

1
4x2 + 1

4y2

)
+

2|f̂x,nNx+1,j |
4x +

|f̂y,nNx+1,j |
4y + K

4x

, for f̂x,nNx+1,j < 0,

4t ≤ 1

D
(

1
4x2 + 1

4y2

)
+
|f̂y,n
Nx+1,j

|
4y + K

4x

, else

and

δinterfaceΩr


4t ≤ 4x2

D+4xσK , for f̂n0 > 0,

4t ≤ 4x2

D+24x|f̂n0 |+4xσK
, else.

(3.67)

2D-parabolic-1D-hyperbolic

Analogously we conduct the derivation of stability conditions for the interface
boundary conditions between the one-dimensional domain Ωr = [Lx, L], for
which the underlying partial differential equation is the hyperbolic equation ∂tuc + ∂xvc = 0,

∂tvc + λ2
c∂xuc = (fc − vc) 1

τ

(3.68)

and in the left domain Ωl = [0, Lx]× [0, Ly] we have again the parabolic equa-
tion.

116



Main Results on the Numerical Approximation of the OOC-model

For the KK-interface boundary conditions we have (3.48), (3.43)

un+1
0 = un0 + λc

4t
4x (un1 − un0 )−

(
4t
4x −

4t
2λcτ

)
(vn0 + vn1 )− 4t

2λcτ
(fn0 + fn1 )

−K 4t
4x4y

jb1∑
j=ja1

(
un0 − unlNx+1,j

+ un+1
0 − un+1

lNx+1,j

)
,

vn0 = K

4y jb1∑
ja1

ul,nlNx+1,j
− un0σ

 .

(3.69)
In order to use the monotonicity condition, we need to diagonalize the bound-
ary conditions of un+1

0 , vn+1
0 into wn+1

0 , zn+1
0 , wn+1

N+1, z
n+1
N+1 with the relation u =

w + z and v = λc (z − w).
Now, we set

vn+1
0 = λc

(
zn+1

0 − wn+1
0

)
= K

4y jb1∑
ja1

un+1
lNx+1,j

− σ
(
zn+1

0 + wn+1
0

)
⇔ zn+1

0 = λc−σK
λc+σK

wn+1
0 + K

λc+σK
4y

jb1∑
ja1

un+1
lNx+1,j

(3.70)

and if we set ρ := λc−σK
λc+σK

,ςn+1 := K
λc+σK

4y
jb1∑
ja1

un+1
lNx+1,j

we obtain for the inner

boundary wn+1
0

wn+1
0 + ρwn+1

0 + ςn+1 = (1 + ρ)wn0 + ςn + 2λc
4t
4x (wn1 − ρwn0 + wn0 − ςn)

+
(
4t
2τ
− λc 4t4x

)
((ρ− 1)wn0 + ςn + zn1 − wn1 )− 4t

2λcτ
(fn0 + fn1 )

−4t4xK
(
σ (1 + ρ)

(
wn0 + wn+1

0

)
+ σ (ςn + ςn+1)

−
∑jbk

j=jak

(
unlNx+1,j

+ un+1
lNx+1,j

))
(3.71)

and applying the monotonicity condition leads to the following inequality

(1 + ρ)− 2λc
4t
4x (ρ− 1) +

(
4t
2τ
− λc 4t4x

)
(ρ− 1)− 4t

4xKkσ (1 + ρ)− 4t
2λcτ

f̂n0 > 0

⇔4t ≤ 1+ρ

2λc
4x (ρ−1)−(4t2τ

−λc 4t4x)(ρ−1)+Kk
σ(1+ρ)
4x +

f̂n0
2λcτ

.

(3.72)
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Proposition 3.3.3 (2D-parabolic-1D-hyperbolic KK-interface boundary con-
dition stability). Let the parabolic convection-diffusion equations, (3.60), de-
fined at the Ωl = [0, Lx] × [0, Ly], and the hyperbolic equation (3.68) defined
at Ωr = [Lx, L] with homogeneous Neumann boundary conditions at the outer
boundaries δoutΩl = Ωl r δinterfaceΩl and δoutΩr = {L} be connected at the
boundary interface δinterfaceΩl = {Lx} × [C,C + σ] and δinterfaceΩr = {Lx} de-
fined as KK-interface boundary condition with KK-parameter K ∈ R>0 and
corridor width σ > 0 with 0 < C < Ly − σ. Furthermore let the finite dif-
ference scheme (3.24), consistent to (3.60), and (3.26) consistent to (3.68)
be complemented with homogeneous Neumann boundary conditions (3.29),
(2.143) each at the outer boundaries and with the discretized KK-interface
boundary conditions at the inner boundary (3.61) and (3.69).
Then the complete finite difference schemes stability conditions at the inner
points,(3.25) and (3.27) complemented with the additional stability constraint
for the KK-interface boundary conditions are

δinterfaceΩl


4t ≤ 1

D
(

1
4x2 + 1

4y2

)
+

2|f̂x,nNx+1,j |
4x +

|f̂y,nNx+1,j |
4y + K

4x

, for f̂x,nNx+1,j < 0,

4t ≤ 1

D
(

1
4x2 + 1

4y2

)
+
|f̂y,n
Nx+1,j

|
4y + K

4x

, else

and

δinterfaceΩr

{
4t ≤ 1+ρ

2λc
4x (ρ−1)−

(
4t
2τ
−λc 4t4x

)
(ρ−1)+Kk

σ(1+ρ)
4x +

f̂n0
2λcτ

(3.73)
with ρ := λc−σK

λc+σK
.

In Figure 3.4 we have visualized the time step restriction (3.72) for a quali-
tative understanding of how the Kedem-Katchalsky constant K and channel
width σ impose more restrictive stability conditions on the time step 4t.
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(a) (b)

Figure 3.4: Time step restriction (3.72) 4t for the hyperbolic interface boundary condition
with 4x = 0.01, 4y = 0.1 and λc = 5 for different K and channel width σ for the interface
boundary between the two-dimensional parabolic equation (3.60) with the one-dimensional
hyperbolic equation (3.68) with f̂ = 0. As expected the time step 4t must be chosen smaller
when either K or σ increases. Furthermore, for K = 0 we recover the time step restriction
of the (AHO)2-scheme 4t ≤ 44xτ

4x+4λcτ
= 2 · 10−3. Since the values of K typically are of

similar magnitude as the diffusion coefficients, the additional stability restriction causes by
the hyperbolic part of the interface boundary conditions are minimal.

Finally we also point out that the time step restriction for the interface bound-
ary condition for the one-dimensional parabolic equation (3.64) is much more
severe than for the one-dimensional hyperbolic equation (3.72) as can also be
qualitatively evaluated by the steepness of Figure 3.3 and 3.4.
Comparing all time step restrictions (3.64), (3.59) and (3.72) with each other,
the restriction for the two-dimensional parabolic interface boundary condi-
tion dominates the full model.

We conclude this section with an example which shows the influence the
KK-constant k ∈ R≥0 has on the dynamics of a 1D-1D-parabolic model and a
1D-parabolic-1D-hyperbolic model for different relaxation times τ , connected
at two interfaces.

Example 1. We consider two one-dimensional parabolic equations (3.49) on
Ωl := [0, 1] and Ωr := [2, 3] with 4x = 0.01, D = 1, f̂l = f̂r = 3 with no-flux
boundary condition at the outer boundaries σoutΩl ∪ σoutΩr = {0} ∪ {3} and
KK-interface boundary conditions at x = 1 and x = 2 with a one-dimensional

hyperbolic equation (3.68) on Ωc := [1, 2] with f̂c = 3 and λc =
√

D
τ

for different

values for the KK-parameters K = 0.1, 1, 10, 100, 1000 and different relaxation
times τ = 1, 0.1, 0.01. The time step4t satisfies stability conditions (3.59) and
(3.72).
Additionally, we also consider the case the hyperbolic equation in the center
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Ωc is replaced by a parabolic equation.
Initial conditions for the left, central and right domain respectively are

ul0(x) = 10e−10(x−0.5)2
, for x ∈ Ωl,

uc0(x) = 0, for x ∈ Ωc,

vc0(x) = 0, for x ∈ Ωc,

ur0(x) = 0, for x ∈ Ωr.

(3.74)

Results: In Figure 3.5 the numerical solution is shown forK = 0.1, 1, 10, 100, 1000

at times t = 0.37 and t = 1 for different relaxation times τ = 1, 0.1 and 0.01.
Due to the constant convection term f̂ = 3 in all three domains, the cell den-
sity u migrates from the left domain through the central domain into the right
domain.
For small KK-constant K, the permeability is decreased which results in an
accumulation at x = 1 and also visibly at x = 2. The larger the value of K
becomes, the smaller the discontinuity between left and right side of the in-
terface becomes.
Furthermore, for larger relaxation times τ the flow of density u from the left
domain through the center domain into the right domain is slower, as can
been seen for t = 0.37.
For larger time t = 1 it seems that the dynamics of the parabolic model com-
pared to the hyperbolic for τ = 0.1, 0.01 are the same, whereas for τ = 0.01

there is no significant difference at both times.
Lastly, we want to remark that the initial mass of Ω := Ωl ∪ Ωc ∪ Ωr

I0 =

∫
Ω

u0(x)dx ≈ 5.46292 (3.75)

is preserved in all models which shows that the KK-transmission boundary
conditions are mass-preserving.
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(1): τ = 1 at time t = 0.37. (2): τ = 1 at time t = 1.

(3): τ = 0.1 at time t = 0.37. (4): τ = 0.1 at time t = 1.

(5): τ = 0.01 at time t = 0.37. (6): τ = 0.01 at time t = 1.

(7): Parabolic equation in Ωc at time
t = 0.37.

(8): Parabolic equation in Ωc at time
t = 1.

Figure 3.5: Influence of KK-interface boundary conditions for K = 0.1, 1, 10, 100, 1000 for
two interfaces, connecting three domains. Parabolic equations defined in Ωl and Ωr. In Ωc a
hyperbolic model in Ωc for relaxation times τ = 1, 0.1, 0.01 is defined and also for a parabolic
model.
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3.3.2 Numerical Tests and Results

With the finite difference methods from Section 3.2.1, the derivation of appro-
priate mass preserving outer boundary conditions and KK-interface boundary
conditions from Section 3.2.2 and 3.2.3 and time step and meshgrid size re-
strictions from 3.3.1 we are finally able to simulate the model (3.1), (3.3) and
(3.4) presented in the first part of Chapter 3.

Initial distribution

As initial conditions we use the following for the two-dimensional chambers
Ωl and Ωr

M (0, x, y) =

{
5 · 10−2 cell

µm2 , for (x, y) ∈ Ωr with x ∈ [670, 700],

0 cell
µm2 , for (x, y) ∈ Ωl,

T (0, x, y) =


0 cell
µ2m

, for (x, y) ∈ Ωr,

10−3e−
x2+(y−500)2

1000 + 10−3e−
x2+(y−1000)2

1000

+10−3e−
x2+y2

1000
cell
µm2

, for (x, y) ∈ Ωl,

φ (0, x, y) = 0, mol
µm2 , for (x, y) ∈ Ωl ∩ Ωr,

ω (0, x, y) = 0, mol
µm2 , for (x, y) ∈ Ωl ∩ Ωr

(3.76)
and for the one-dimensional channels Ωck

M(0, x) = T (0, x) = 0, cellµm ,

φ(0, x) = ω(0, x) = 0molµm .
(3.77)

For the two-dimensional chambers Ωl,Ωr we use the two-dimensional parabolic
model (3.1), whereas for the one-dimensional channels Ωc we mainly use the
one-dimensional hyperbolic model (3.4) and only conduct one numerical sim-
ulation where we use the one-dimensional parabolic model (3.3) for compar-
ison reasons.
The initial distributions are shown in Figure 3.6.
This choice of initial conditions corresponds with the laboratory experiment
where the immune cells M are almost evenly distributed in the right chamber
Ωr. We set the density of immune cells in the left chamber to zero to better
see the dynamics of the immune cell migration towards the tumour cells.
As for the tumour cells, we choose a normal distribution at three locations
in the left chamber which simulates the case where only a small number of
tumour cells is present in the left chamber.
For the chemoattractant φ and cytokine ω we set the initial distribution to
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zero. Although we expect in the laboratory experiment the presence of chemoat-
tractant and cytokine evenly distributed in channels and chambers, we ne-
glect those since no data of their distribution are currently available in the
laboratory experiment and set them to zero.
Additionally, as seen in Figure 1.8, the outer boundaries of the domains are
open, yet in this numerical simulation we propose closed boundaries, i.e. ho-
mogeneous Neumann boundary conditions.

Chemotactic and source terms

For the chemotactic term f := Mf̂ = Mχ(M,φ)∇φ we are considering several
types as presented in Section 1.6.

I Basic model (directional movement up a spatial gradient of chemoat-
tractant) (1.52)

χ(M,φ) := k3. (3.78)

II Receptor saturation (dependence on concentration of chemoattrac-
tant in a cell’s local environment [140]) (1.53)

χ(M,φ) :=
k1

(k2 + φ)2 . (3.79)

III Overcrowding (ability to move freely reduces at high densities as cell
density approaches maximum value Mmax [71]) (1.54)

χ(M,φ) :=
k1

(k2 + φ)2

(
1− M

Mmax

)
. (3.80)

IV Interaction (migration of cells in response to gradients of their own
density and of chemoattractant [49]) (1.55)

f̂ :=
k1

(k2 + φ)2∇φ+
η1

1 + η2M
∇M. (3.81)

V Interaction (chemoattractant free [49] ) (1.56)

f̂ :=
η1

(η2 + T )γ
∇T. (3.82)

For the decay rate of tumour cells we choose

λT (ω) :=
kw1

kw2 + ω
, (3.83)
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and do not take into account the administration of drugs, hence

kT (t) = kM(t) = 0

since they were not conducted in the laboratory experiments.

As for the values of the parameters, geometry of the chip, and time step
and mesh grid size, which are used for the following numerical simulations,
they can be found in table 3.1.
For the finite difference methods we have used 4x = 2.5µm and 4y = 25µm

and choose 4t according to satisfy the stability conditions.
For a qualitative comparison between the different dynamics due to the vari-
ety of chemotactive terms f , we have chosen coefficients k1, k2, k3, η1 and η2

to have similar magnitudes.
As for the geometry, we have chosen m = 14 channels Ωcm. An increase of
number of channels left unchanged both the dynamics and the values of den-
sities in both chambers.
For the numerical simulations in Figure 3.7-3.12 we have chosen the priorly
presented finite difference schemes.

Graphical representation and explanation

Figure 3.7-3.12 show the evolutions of T ,M ,φ and ω over time for different
chemotactic terms f .
In Figure 3.11 the parabolic equation for the one-dimensional channels with
the receptor saturation model (3.79) has been used.
Figure 3.12 is a special case where we have chosen different parameters
compared to the ones in Table 3.1, where the diffusion coefficient DT is re-
duced one hundred fold to simulate more fixated tumour cells, DM reduced
ten fold but the diffusion of the chemoattractant Dφ and Dω increased ten
fold, in order to have a more chemotactic dominant dynamic.
In all figures the value of density is represented by a color map with its cor-
responding color bar.

We need to remark that the color bar indicates the value of concentration per
area in the two-dimensional chamber and per length in the one-dimensional
channels.
This allows us to visually investigate the dynamical behaviour in the cham-
bers and channels but does not allow to compare the concentration quanti-
ties in the one-dimensional channels with the two-dimensional chambers only
based on their color to each other.
Furthermore, even when a density distribution in a chamber looks constant
according to its color and corresponding color value, this can be misleading
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if only small changes of concentration are present which might be not notice-
able due to a marginal change in color.
For this reason we included monochromatic contour lines ranging from the
color black to white to better visualize the motion and shape of the densities
in the chambers and around the interfaces between two-dimensional cham-
bers and one-dimensional channels. The contours have to be interpreted
relatively to the whole two-dimensional domain. If the color value indicates a
constant distribution, the contours are able to show slight accumulation and
de-cumulation of density.
This visualization helps to compare the dynamics of each model better.

Figure 3.13 shows a direct comparison of the immune cell dynamics M be-
tween the different models with the chemoattractant distribution for t = 250.
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Initial Distribution

Figure 3.6: Initial distribution of T0,M0, φ0 and ω0 (3.76). Immune cells are distributed
evenly in the right chamber Ωr, tumour cells concentrated in three locations in the left
chamber.

Influence of chemotactic terms on immune cell dynamics

General similarities

When comparing the different models with equal diffusion coefficient DT the
dynamics of T is similar due to the fact that the models differ only in the
chemotactic term f̂ which influences the dynamic of immune cells M and
consequently the released cytokine ω. All models show a reduction in tumour
density T towards an almost constant value of 2.5 · 10−4 for t = 500.
Furthermore, we can see in all models that the tumour cells are accumulat-
ing around the entry part of the one-dimensional channels. However a small
quantity of tumour cells have been able to enter the right chamber Ωr, mainly
focused on the top, middle and bottom channel exits.
Consequently, the evolution of the chemoattractant distribution φ over time
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Parameter Description Units Value Ref.

DM diffusivity of cells µm2/s 9× 102 [105]
DT diffusivity of cells µm2/s 5.6× 101 [105]
Dφ, Dω diffusivity of chemoattractants µm2/s 2× 102 [105]
αT decay rate of drug release s−1 0 -
αM decay rate of drug release s−1 0 -
KT decay rate of T caused by drug s−1 0 -
KM decay rate of M caused by drug s−1 0 -
αφ growth rate of φ s−1/cell 10−1 [37]
βφ consumption rate of φ s−1 10−4 [37]
αω growth rate of ω s−1/cell 10−1 [37]
βω consumption rate of ω s−1 10−4 [37]
k1 cellular drift velocity Mcm2s−1 3.9 · 10−9 [105]
k2 receptor dissociation constant M 5 · 10−6 [105]
k3 drift velocity Mcm2s−1 156 [105]
η1 cellular drift velocity Mcm2s−1 3.9 · 10−9 [105]
η2 receptor dissociation constant M 5 · 10−6 [105]
kω1 killing efficiency of immune cells cell−1µm/s 1 -
kω2 dissociation constant cell/µm2 1 -
γ exponent in chemotactic response χ 2 [105]
Mmax maximum cell density cell/µm2 M0 [71]
τM relaxation time of M s 1 -
τT relaxation time of T s 1 -
L length of the channel µm 500 [31]
σ width of the channel µm 12 [31]
σ̃ width between channels µm 33 [31]
Lx horizontal size of the chamber µm 100 [31]
Ly vertical size of the chamber µm 1000 [31]

Table 3.1: Parameters of the problem.
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Basic Model

(b) T for t = 50. (c) M for t = 50.

(d) T for t = 250. (e) M for t = 250.

(f) T for t = 500. (g) M for t = 500.

Figure 3.7: Evolution of T (left)and M (right) for the basic model (3.78). Immune cells
migrating through all channels into the left chamber where the tumour cells are present.
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Receptor-Saturation Model

(b) T for t = 50. (c) M for t = 50.

(d) T for t = 250. (e) M for t = 250.

(f) T for t = 500. (g) M for t = 500.

Figure 3.8: Evolution of T (left) and M (right) for the receptor saturation model (3.79). Im-
mune cells favour bottom,top and central channels for migration initially and most noticeable
at t = 50− 250.
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Overcrowding Model

(b) T for t = 50. (c) M for t = 50.

(d) T for t = 250. (e) M for t = 250.

(f) T for t = 500. (g) M for t = 500.

Figure 3.9: Evolution of T (left) and M (right) for the overcrowding model (3.80). Similar
dynamics as for the receptor saturation model but the white contours indicate a stronger
migation of immune cells through the central channels.
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Interaction Model (chemoattractant free)

(b) T for t = 50. (c) M for t = 50.

(d) T for t = 250. (e) M for t = 250.

(f) T for t = 500. (g) M for t = 500.

Figure 3.10: Evolution of T (left) and M (right) for the interaction (chemoattractant free)
model (3.82). The results are very similar to the receptor-saturation model.
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Receptor-Saturation Model (1D-parabolic in channel)

(b) T for t = 50. (c) M for t = 50.

(d) T for t = 250. (e) M for t = 250.

(f) T for t = 500. (g) M for t = 500.

Figure 3.11: Evolution of T (left) and M (right) for the receptor saturation model (3.79)
and the one-dimensional channels modelled by the one-dimensional parabolic equation (3.3).
Similar dynamics compared to the hyperbolic equation in channels but overall slower migra-
tion of immune cells into the right chamber.
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Receptor-Saturation Model (chemotactic dominant)

(b) T for t = 50. (c) M for t = 50.

(d) T for t = 250. (e) M for t = 250.

(f) T for t = 500. (g) M for t = 500.

Figure 3.12: Evolution of T (left) andM (right) for the receptor saturation model (3.79) with
lower diffusion of cells to ensure sharper and stronger chemotaxis. The dynamics are similar
to the model with larger diffusion, but the immune cells are more concentrated around the
micro-channels.
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can be represented by the dynamics of the tumour cells T which are produc-
ing φ.

Comments on results depicted in Figures 3.7-3.12

The vigorous difference of each model is the dynamics of the immune cells
M and thus of the cytokine ω.

Basic model (Figure 3.7)

In the basic model (3.78) we can see that immune cells have been able
to enter the left chamber Ωl. In the right chamber Ωr we can clearly see
through the contour lines (black indicates decrease) that there is a nega-
tive slope of immune cell density M towards the channel entries, whereas
in the one-dimensional channels an accumulation occurs. This is caused by
the chemoattractant φ, which accumulates around the entries of the chan-
nels in the right chamber causing the immune cells to migrate according to
the chemoattractant gradient and getting trapped at the highest chemoat-
tractant concentration around the entry areas of the channels. We want to
remark however that a direct comparison of the concentration between the
one-dimensional channels and two-dimensional chambers can be misleading
due to the fact that in the one-dimensional channels the color bar values indi-
cate the concentration per length unit but for the two-dimensional chambers
area per unit.0

Receptor-Saturation model (Figure 3.8)

For the receptor saturation model (3.79), we notice that more immune cells
have migrated towards the left chamber, as can also be seen by the shift of
density in the channels towards the left.
In the receptor saturation model, once the immune cells M are reaching
those chemoattractant concentration peaks around the entry areas of the
channels, they are able to move through because the chemotaxis is being
reduced in presence of high chemoattractant concentrations through satura-
tion. This makes the diffusive component of the movement of the immune
cells influential enough to continue their migration through the channel and
into the left chamber.
Additionally, there is a higher concentration of immune cells around the mid-
dle, top and bottom channels, explained by the fact that a larger quantity of
chemoattractant is present in these areas. Also there is a larger accumula-
tion around those channel entries, caused by the strong convective force.
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Overcrowding model (Figure 3.9)

Comparing the basic and receptor-saturation model with the overcrowding
model (3.80) we notice that much more cells have been able to migrate to-
wards the left chamber as in the receptor saturation model. Comparing the
contour lines shows similar dynamics between overcrowding and receptor-
saturation model. The major difference is in the slightly shifted concentra-

tion peaks in the channels caused by the additional factor term
(

1− M
Mmax

)
that reduces the chemotactic migration through channels compared to the
receptor-saturation model.

Interaction (chemoattractant free) model (Figure 3.10)

We briefly investigate the interaction (chemoattractant free) model (3.82). In
this model the chemotactic movement of the immune cells are solely influ-
enced directly by the tumour cells T .
It is interesting to notice that the dynamics of the right chamber is inverted
compared to the receptor-saturation and overcrowding models.
Whereas in the other models, the immune cells in the right chamber are
accumulating near the entries of the channels, in the chemoattractant free
model, the immune cells are gathering in the upper and lower right corner of
the chamber, away from the channel entries.
Looking at the immune cell density distribution of the channels, we can de-
duce that the convective migration is more dominant than in the chemotaxis
models.
An indication is the density distribution M in the channels which reflects the
tumour cell distribution of the left chamber.
In the right chamber on the other hand, the immune cells are accurately mi-
grating towards the highest concentrations of tumour cells T in the middle
and corners of the chamber.
This behaviour can be explained by the fact that with the chemoattractant φ
the accurate position of the tumour cells can only be determined indirectly
because of the higher diffusion, the migration is being slowed down and dif-
fused.

Receptor-Saturation model (1D-parabolic model in channels) (Figure
3.11)

Modelling the one-dimensional channels with the parabolic equation (3.3)
and comparing the contour lines of the receptor-saturation model between
the hyperbolic and parabolic one-dimensional modelled channels shows sim-
ilar dynamics in the chambers. However, the propagation of immune cells
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from the right to the left chamber seems to be faster compared to the hy-
perbolic Receptor-Saturation model, which is also noticeable in Figure 3.13
where the peak of immune cell concentration in the channels migrated fur-
ther than in the hyperbolic model.

Receptor-Saturation model with low cell diffusion (Figure 3.12)

Lastly, we investigate the dynamics of the receptor-saturation model, where
we have lowered the cell diffusion and increased the chemical diffusion in
order to enforce a stronger convective situation.
Comparing this model with the other two receptor-saturation models shows
clearly that according to the contour lines, the dynamics in the left chamber
are similar between these three models but in the right chamber the situation
is inverted with a strong decline of immune cell concentration around the
channel entries caused by the strong convection.

Particle Representation (Figure 3.14)

Our mathematical model tries to describe the laboratory experiment of the
microfluidic chip in a macroscopic way in form of density fields.
This is of importance considering that Organ on Chips (OOC) are developed
to simulate tissues, organs and other biomaterial with millions of cells.
The available data and observations of the laboratory experiment on the other
hand are on a microscopic level where only the trajectories of cells as data
are available.
For this reason we also have a particle representation of the numerical simu-
lations for each model at time t = 500 shown in Figure 3.14.
The particles for each model has been obtained with the acceptance-rejection
method (7.1) that will be described in Section 7.1 where we will give a more
detailed explanation. The particle representation allows us to see the differ-
ent dynamics of migration of immune cells M (blue) and the decay of tumour
cells T (red) for different chemotactic terms f .
We do not include a particle representation in the one-dimensional channels
due to the fact that the combination between particles in a two-dimensional
domain with one-dimensional domains would create a particles in channels
which are very close to each other and does not represent the observation
made in the laboratory experiments [15, 31].
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Model Comparison and Chemoattractant Distribution

Figure 3.13: Chemoattractant distribution φ and immune cell distribution M at time t = 250

for different chemotactic functions f and different parameter values.
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Particle Representation

Initial distribution t = 0

(c) I Basic model (d) II Receptor saturation

(e) III Overcrowding (f) V Interaction(chemotractant free)

(g) Fully parabolic in channels (h) Receptor saturation with low diffusion for
T and M and high diffusion for φ and ω

Figure 3.14: Particle representation of solution in the two-dimensional chambers for differ-
ent chemotactic terms f for time t = 500. Blue points: immune cells M . Red points : tumour
cells T . Particles generated with the acceptance-rejection algorithm 7.1. No particles are
visualized in the channels because they are mathematically modelled as one-dimensional do-
mains, for which no satisfactory particle representation was possible.
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Part II

Estimation of Parameters in
Convection-Diffusion-Systems



In the previous two parts we have constructed a novel multi-domain trans-
mission model for the OOC (1.45)-(1.47) based on the results made from the
laboratory experiments [15, 31] and presented a numerical approximation of
the model describing the qualitative behaviour of different cell species living
in a confined environment.
The intrinsic parameters used for the model have been obtained from the lit-
erature, indicating typical values for each quantity (see table 3.1).
The following part deals with some background necessary to derive a method
that is able to calibrate the OOC model with parameter values such that the
model replicates the actual dynamics observed in the laboratory experiment
based on real data. These methods to recover model parameters are called
parameter estimation methods and are known as inverse problems [48] and
have a wide application in a variety of scientific fields such as geophysics,
medical imaging, machine learning and many more [10]. It is the first study
about such methods applied to mathematical models on Organ-on-Chips.
The outline of Part II is the following.
In Chapter 4 we introduce the basic theory for solving equation systems. We
begin with linear equation systems and explain the derivation of the most
standard iterative methods, the relaxation methods, and define the general
theory of convergence and consistency for iterative methods in general. We
then further discuss the theory of linear multigrid methods as another itera-
tive method, which takes advantages of error smoothing properties of relax-
ation methods [28, 29, 138].
Lastly, we present the Conjugated Gradient Method (CG-method), a proto-
type of Krylov-Subspace methods, a class of iterative methods, which are
especially designed for solving large and sparse equation systems [100].
The following chapter focuses on root-finding numerical methods for non-
linear equation systems such as Newton’s methods and its variations [41,
113]. We explain the numerical challenges involved in solving non-linear
equations and analyse certain requirements for convergence. We then pro-
ceed with the non-linear counterpart of multigrid methods by introducing
multigrid methods for linear equation systems within non-linear solvers such
as the Newton-Multigrid method (Newton-MG) [22] and the Full Approxima-
tion Scheme (FAS) which adopts the main idea of multigrid methods for the
non-linear case [23].
Chapter 5 then serves as an introduction to non-linear optimization problems
where numerical methods for finding local minima of non-linear objective
functions are presented with their proper derivations and some convergence
theory [4, 111, 132]. We will mainly focus on line search methods, which are
numerical methods that search for a descendent direction that decreases the
value of the objective function iteratively. Important theorems like the Wolfe
and Armijo conditions [111] are discussed that are necessary to compute suf-
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ficient step lengths for the descend direction in order to ensure convergent
minimization methods.
We will then proceed with constrained optimization problems and analyse
techniques to solve them under previously presented methods [111].
In Chapter 6 we finally define the parameter estimation problem as an inverse
problem, explain the challenges of finding minima of non-linear ill-posed
problems and introduce several ideas such as regularization techniques that
helps in the identification of correct parameters [10, 48, 151].
In the same chapter we will also review certain methodology for parameter
estimation problems found in the current scientific literature such as [8, 49,
80, 91, 92, 110] and analyse and interpret their results. In the last chapter
of Part II we apply all the previously introduced theories and methods of pa-
rameter estimation problem to the general convection-diffusion equation. We
modify existing methods and regularization techniques in order to create a
robust parameter estimation method for OOC-models.
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Chapter 4

Solving Linear and Non-Linear
Systems

This chapter focuses on the solution of linear and non-linear systems which
arise from the discretization of partial differential equation in form of implicit
finite difference schemes.
We differentiate between direct and iterative methods for solving these sys-
tems. The advantage of direct methods is that they provide the exact solution
(besides rounding errors) within a finite number of operations. The disadvan-
tages are the computational costs and the storage required to perform the
necessary operations, which are not feasible for big systems.
Iterative methods on the other hand, begin with a first initial approximation
of the solution and iteratively improve it such that it converges towards the
exact solution with much less computational cost and storage.
In the following section we investigate linear equation systems of the form

Ax = b (4.1)

with a matrix A ∈ Rn×n and vectors b, x ∈ Rn, where the linear equation
system has the unique solution x = A−1b.
For an approximated solution of (4.1) x̃ ∈ Rn let the error e ∈ Rn be defined
as

e = x− x̃ (4.2)

and the residual r ∈ Rn
r = b− Ax̃ (4.3)

with the relation between error e and r

Ae = r. (4.4)

The most noteworthy direct methods are

• Gauß-Elimination: A = LU
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• Cholesky factorization: A = LLT

• QR factorization: A = QR,

where the system matrix A ∈ Rn×n is decomposed into a product of two
matrices L,U ∈ Rn×n that are lower and upper tridiagonal matrices and
Q,R ∈ Rn×n with Q orthogonal and R upper tridiagonal matrix.
Although direct methods are not used for large systems and will not be dis-
cussed any further in this thesis, they can be used as preconditioners to in-
crease the rate of convergence and stability of iterative methods. We refer
to the literature [29, 100] where the algorithms for direct methods are being
described and preconditioners discussed.

If the mathematical problem involves the solution of a system of equations
with F : Rn → Rn, F (x) = 0 with at least one equation that does not depend
linearly on some variables, the system is named non-linear. These equations
commonly appear in modelling mechanical systems, chemical reactions, op-
timization problems and many other topics. Because the numerical solution
of such non-linear systems often involves solving a related linear system, we
discuss them first before proceeding with non-linear systems.

4.1 Iterative Methods

Solving linear equation systems with direct methods is efficient for small sys-
tems and gives exact solutions. But usually systems are large, storage is
limited and one is only interested in approximated solutions because the lin-
ear equation systems might arise for instance from approximated methods,
for example from finite difference methods, which already contain discretiza-
tion errors.
Before we can define iterative methods, we need the following definitions.

Definition 4.1.1 (Fixed point). An element x of a set D ⊂ X is called fixed
point of a mapping F : D → X, if

F (x) = x. (4.5)

Definition 4.1.2. Let X be a normed vector space. A mapping F : D ⊂ X →
X is called a contraction, if there exists a q with 0 ≤ q < 1 such that

‖ F (x)− F (y) ‖≤ q ‖ x− y ‖, ∀x, y ∈ D. (4.6)

Theorem 4.1.3. A contraction mapping is continuous and has at most one
fixed point [29].
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The following theorem is a useful tool that provides information on the exis-
tence and uniqueness of fixed points of maps. It is not only being used for
deriving convergence conditions for many iterative methods but it also gives
insight in their speed of convergence.

Theorem 4.1.4 (Banach Fixed Point Theorem [100]). Let X be a normed
vector space with D ⊂ X and with contraction map F : D → D, then F

admits one and only one fixed point x ∈ D of F and the sequence

xn+1 = F (xn), for n = 0, 1, 2, . . . (4.7)

converges for every initial value x0 ∈ D towards x.

We are now able to construct an iterative method to gradually approximate
the solution of a linear equation system

Ax = b (4.8)

with A ∈ Rn×n and x, b ∈ Rn.

Definition 4.1.5 (Iterative method). An iterative method given by the map-
ping

φ : Rn × Rn → Rn (4.9)

is linear, if matrices M,N ∈ Rn×n exists such that

φ(x, b) = Mx+Nb. (4.10)

A vector x̃ ∈ Rn is called fixed point of the iterative method φ to b ∈ Rn, if

x̃ = φ(x̃, b). (4.11)

As of now, we established the definitions for general iterative methods. In
order for these methods to give approximated solutions for linear equation
systems (4.8), we need to define consistency and convergence to create this
link.

Definition 4.1.6. An iterative method φ is consistent to matrix A ∈ Rn×n, if
for all b ∈ Rn the solution A−1b is a fixed point of φ to b. It is convergent if for
all b ∈ Rn and for all initial values x0 ∈ Rn a limit x̃ ∈ Rn

x̃ = lim
m→∞

xm = lim
m→∞

φ(xm−1, b) (4.12)

independent of the initial value x0 exists.
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Consistency is a necessary condition for every iterative method in order to
have a reasonable connection between the numerical method and the linear
equation system. An equivalent definition to 4.1.6 is that a linear iterative
method is consistent to matrix A, iff M = I −NA.

We remark that a consistent linear iterative method (4.10) can be also written
in the form

xm+1 = xm +Nrm (4.13)

with residual rm = b − Axm. This equation shows the idea that the current
approximation xm is being updated by some sort of residual correction term
with residual rm ∈ Rn.
The iterative method (4.13) shows that matrix N is be an approximation of
A−1 ideally less costly to compute than the inverse matrix of A.
Consistency only gives a necessary condition for the linear iterative method
to produce approximated solutions to a linear equation system. We need
convergence in order to have a sufficient condition that the solutions given
by the iterative method φ is, in fact, an approximated solution to the linear
equation system (4.8).

Proposition 4.1.7. A linear iterative method φ is convergent if and only if
the spectral radius of the iteration matrix M is

ρ(M) < 1. (4.14)

The proof can be shown with the Banach Fixed Point theorem.

With this we conclude the main concepts of iterative methods and proceed
with a specific class of iterative methods.

4.1.1 Relaxation Methods

Relaxation methods are a class of iterative methods to solve linear equation
systems Ax = b based on the partition of matrix A ∈ Rn×n with

A = B + (A−B), B ∈ Rn×n (4.15)

such that with the equivalent linear equation system

Ax = b

⇔ Bx = (B − A)x+ b

⇒ x = B−1(B − A)x+B−1b

(4.16)

we obtain the linear iterative method

xm+1 = φ(xm, b) = Mxm +Nb, for m = 0, 1, . . . (4.17)
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with matrices
M : = B−1(B − A),

N : = B−1 (4.18)

which is also called relaxation method.
For a splitting of matrix A, such that

A = D + L+ U, (4.19)

where D is the diagonal matrix of A, and L and U are the strictly lower and
upper triangular part of A respectively we have the following well known
relaxation methods:

• Jacobi method: M := D−1(D − A) and N := D−1.

• damped Jacobi method M := I − ωD−1A and N := ωD−1.

• Gauß-Seidel method M := −(D + L)−1U and N := (D + L)−1.

• SOR methodM(ω) := (D+ωL)−1 [(1− ω)D − ωU ] andN := ω(D+ωL)−1.

• Richardson method M := (I − ωA) and N := ωI.

The relaxation methods can be derived by modifying the residual correction
term of (4.13) with a weight ω ∈ R.

xm+1 = xm + ωNrm. (4.20)

Each of the indicated methods are consistent. However, convergence will
be only guaranteed if the spectral radius of the iteration matrix satisfies
ρ(M) < 1. We refer to [29, 100] for a more detailed explanations and analysis
on relaxation methods, their speed of convergence and convergence asser-
tions which infer certain conditions to be fulfilled by the matrix A in order to
obtain convergence, such as diagonal dominance and positive-definiteness.
Although relaxation methods can provide approximated solutions to linear
equation systems, they are typically slower in convergence than other iter-
ative methods such as Krylov subspace methods. Yet, these methods have
their usefulness as preconditioners or as smoothers for multigrid methods
we will present in the next sections.

4.1.2 Krylov Subspace Methods

Another kind of iterative methods is called Krylov-subspace methods, belong-
ing to the class of projection methods.
In relaxation methods the approximated solution xm is determined by a fixed
iteration function φ with xm = φ (xm−1, b) for a linear equation system Ax = b.
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These solutions are always in the preimage of Rn with xm ∈ Rn. In projection
methods however, the approximated solution xm are only valid in the m < n-
dimensional affine-linear subspace x0 + Km such that if u1, . . . , um ∈ Rn is a
base of the Krylov subspace Km ⊂ Rn, then

xm := x0 + α1u1 + · · ·+ αmum (4.21)

with αi ∈ R. The m degrees of freedom are clearly defined by the orthogonal-
ity condition

(b− Axm)⊥Lm, (4.22)

with the m-dimensional subspace Lm ⊂ Rn. This condition means that the
residual rm is orthogonal to the Krylov-subspace Lm.
It follows that the iterations are defined implicitly by the orthogonality con-
ditions (4.22) and each projection method differs solely on the choice of the
Krylov subspaces Km and Lm.

Definition 4.1.8 (Krylov-Subspace Method). A Krylov-subspace method is a
projection method for the solution of the linear equation system Ax = b with
A ∈ Rn×n and x, b ∈ Rn, with the Krylov subspace

Km = Km (A, r0) = span{r0, Ar0, . . . , A
m−1r0} (4.23)

with residual r0 = b− Ax0.

For Km = Lm the residual rm = b− Axm is orthogonal to the Krylov subspace
Km and hence we call the projection method orthogonal with orthogonality
condition rm⊥Km (also called Galerkin condition).
For Km 6= Lm the orthogonality condition (4.22) is also called Petrov-Galerkin
condition.
Krylov subspace methods are often described through a reformulation of the
linear equation system into a minimization problem. In the following we will
give a brief derivation of the conjugated gradient method (CG) as such a
method.
At this point we consider symmetric positive-definite matrices A ∈ Rn×n for
the linear equation system Ax = b.
We consider the functional

F : Rn → R : F (x) :=
1

2
〈Ax, x〉 − 〈b, x〉 (4.24)

with scalar product 〈·, ·〉. The functional (4.24) can also be defined as the
energy norm ‖ · ‖A:=

√
〈Ax, x〉 of a symmetric positive-definite matrix A.

Looking at the gradient of the functional

∇F (x) = Ax− b (4.25)
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we can see that the solution x∗ = A−1b of the linear equation system is equiv-
alent to the global minimum of the functional F if the matrix A is symmetric
positive-definite.

Theorem 4.1.9. Let A ∈ Rn×n be symmetric positive definite and b ∈ Rn,
then for functional F (4.24) the vector x∗ ∈ Rn

x∗ = arg min
x∈Rn

F (x) (4.26)

is the global minimum if and only if

Ax∗ = b. (4.27)

Thus solving the linear equation system is equivalent to the minimization of
the functional F

x∗ = arg min
x∈Rn

F (x). (4.28)

We anticipate methods for solving minimization problems which will present
in Chapter 5 in more detail.

For now we define another function

fx,p : R→ R, fx,p (λ) := F (x+ λp) , (4.29)

that transform the minimization problem (4.28) into a one-dimensional mini-
mization problem for a given search direction pm ∈ Rn and step length λm ∈ R
along which we want to minimize the value of the function fx,p.
We therefore create the iterative method

xm+1 = arg min
x∈xm+span{pm}

F (x), (4.30)

which is equivalent to

λm = arg min
λ∈R

fxm,pm (λ) , xm+1 = xm + λmpm. (4.31)

This is a prototypical method for line search methods which will present in
more detail in the next chapters.
For the optimal step length λopt we can make use of the symmetric positive
definite property of matrix A.

Theorem 4.1.10. Let A ∈ Rn×n be symmetric positive definite and b, x, p ∈ Rn
with p 6= 0 then

λopt = λopt (x, p) := arg min
λ∈R

fx,p (λ) =
〈r, p〉
〈Ap, p〉

(4.32)

with residual r := b− Ax [100].
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This keeps the question open which sequence of search directions pm can be
used.
An intuitive choice is using the steepest decent of the functional defined as

∇F (x) = Ax− b = −r (4.33)

and as such obtain the search direction

pm :=


rm
‖rm‖ , for rm 6= 0,

0, for rm = 0.
(4.34)

Using a search direction (4.34) brings us to the gradient descent method,
an iterative optimization method for finding local minima.
In the context of Krylov subspace method, the gradient descent method is an
orthogonal projection method with Km = Lm = span{rm−1}.
In order to find better search directions, we need to define what an optimal
search direction is.

Definition 4.1.11. Let F : R→ R, then x ∈ Rn is called

• i) optimal in regards to the search direction p ∈ Rn if

F (x) ≤ F (x+ λp) , for all λ ∈ R. (4.35)

• ii) optimal in regards to a subspace U ⊂ Rn, if

F (x) ≤ F (x+ ζ) , for all ζ ∈ U . (4.36)

For a functional F (4.24), x ∈ Rn is only optimal in regards to U ⊂ Rn, iff

r = (b− Ax)⊥U. (4.37)

The iteration xm of the gradient descent method are only optimal in regards
to the single search direction rm−1 = b− Axm−1.
A desirable extension would be that xm is optimal in regards to the whole
subspace U = {r0, . . . , rm−1} which would mean that for linear independent
residuals, the exact solution can be found in the n-th iteration.
In other words we want that the next iteration xm+1 is not only optimal for the
search direction pm but also for all previous search directions pm−1, . . . , p0.
How to choose the search direction such that the optimality is inherited is
shown in the following theorem.

Theorem 4.1.12. Let the vector x ∈ Rn be optimal in regards to the subspace
U = span{p0, . . . , pm−1} ⊂ Rn for function F in (4.24), then x̃ = x+ ζ is optimal
in regards to U if, and only if,

Aζ⊥U. (4.38)
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Using theorem 4.1.12, we need to choose pm such that

Apm ⊥ Um = span{p0, . . . pm−1}

⇔ Apm ⊥ pj, for j = 0, . . . ,m− 1,
(4.39)

so that iteration xm+1 is optimal in regards to Um.
This condition can be summarized under the term A-conjugated, which
means that vectors pi, pj, · · · ∈ Rn are pairwise A-conjuagted with

〈pi, pj〉A := 〈Api, pr〉2 = 0, for all i, j ∈ {0, . . . ,m} and i 6= j. (4.40)

If we have pairwise A-conjugated search directions p0, . . . , pm and the itera-
tion xm is optimal in regards to Um = span{p0, . . . , pm−1}, then the next itera-
tion with

xm+1 = xm + λpm (4.41)

is optimal in regards to Um+1 if

λ =
〈rm, pm〉2
〈Apm, pm〉2

, (4.42)

which can be shown by using (4.37).
With pairwise A-conjugated search directions p0, . . . , pm ∈ Rn and λm (4.42)
we can guarantee iterations xm+1 which are optimal towards the subspace
Um+1.
As for the appropriate choice of search directions, we extend the gradient
descent method approach by choosing

p0 = r0 (4.43)

and iteratively calculating

pm = rm +
m−1∑
j=0

αjpj (4.44)

with coefficients αj ∈ R which can be determined by requiring the pairwise
A-conjugation of the search directions p0, . . . , pm:

0 = 〈Apm, pi〉2 = 〈Arm, pi〉2 +
m−1∑
j=0

αj〈Apj, pi〉2, (4.45)

which leads to the coefficients

αi = −〈Arm, pi〉2
〈Api, pi〉

. (4.46)
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The iterative method
xm+1 = xm + λmpm (4.47)

with search direction (4.43), (4.44), (4.46) and search step length λm (4.42)
is the conjugated gradient method.
Because the CG-method is defined as

xm ∈ x0 + span{p0, . . . pm−1} = span{r0, . . . , A
m−1r0} = Km (4.48)

and is by definition optimal in regards to the Krylov subspace Km, which
means

rm⊥Km = Lm (4.49)

the method is an orthogonal projection method.
Although the requirement to use the CG-method on linear equation system
Ax = b is that the matrix A ∈ Rn×n is symmetric positive-definite, CG-methods
can also be used on the normal equation ATAx = AT b since the matrix AtA is
symmetric positive-definite for regular A.
However this squares the condition number which leads to slower conver-
gence rates.

4.1.3 Multi Grid Methods

This section provides some numerical background about multi grid methods.
The main references for this chapter [28, 63, 138] from which most of the
content are taken and we refer to them for a more detailed presentation
about convergence.
Just as relaxation methods, multi grid methods are iterative methods, which
are also often used to solve linear equation systems arising from discretiza-
tions of partial differential equations but they can be applied to non-linear
equation systems [22, 23, 69], too.
Multi grid methods have the following properties:

• The convergence rate is independent of the mesh grid size and the sys-
tem can be solved with only a small number of iterations.

• The distribution of the error is divided into two parts which are smooth
and coarse error parts. The coarse error parts are being dealt with by
a smoother, which is a method that eliminates the coarse error parts,
whereas the smooth error parts are being dealt with by a coarse-grid
correction.

Using these two parts recursively is the core of a multigrid method.
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For the following, we will consider the one-dimensional Poisson equation

−∂xxu (x) = f (x) , for x ∈ Ω,

u (x) = 0, for x ∈ δΩ
(4.50)

with u ∈ C2(Ω,R) ∩ C(Ω,R) and given Ω = (0, 1), δΩ = {0, 1} and f ∈ C(Ω;R).
The eigenfunctions of the homogenous boundary value problem (4.50) are

u(x) = c sin(jπx) with j ∈ N and c ∈ R. (4.51)

We now define the mesh grid refinement 4xl with 4x0 = 1
2

and 4xl = 4x0

2l
=

2−(l+1) and the grid refinement Ωl :=
{
j4xl|j = 1, . . . , 2l+1 − 1

}
for l = 0, . . . .

When we discretize the Poisson equation (4.50) by using a central difference
method in space, we obtain the following linear equation system

Alu
l = f l (4.52)

with

Al = 1
4xl


2 −1

−1 2 −1
. . . . . . . . .

. . . . . . −1

−1 2

 ∈ R
(Nl)×(Nl),

ul =

 ul1
...
ulNl

 and f l =

 f l1
...
f lNl

 .

(4.53)

For the eigenvectors of matrix Al we have

υl,j =
√

24x

 sin (jπ4xl)
...

sin (jπNl4xl)

 , for j = 1, . . . , Nl, (4.54)

which are clearly the discretized version of the eigenfunction (4.51).
Fourier modes are more oscillatory for larger j and thus less smooth. We can
henceforth distinguish between low-and high frequency as follows.

Definition 4.1.13. The eigenvectors vl,j can be classified into

• low frequency component vl,j with 1 ≤ j < Nl
2

.

• high frequency component vl,j with Nl
2
≤ j ≤ Nl.
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Theorem 4.1.14. [29] The vectors υl,j defined in (4.54) are eigenvectors
of matrix Al with the associated eigenvalues λl,j = 4

4x2
l

sin2
(
jπ4xl

2

)
. These

eigenvectors form an orthonormal basis of RNl.

If we apply the linear equation system (4.52) to the damped Jacobi relaxation
method with ω = 1

2
ω̃ we obtain

ulm+1 = ulm + ω̃D−1
l

(
f l − Alulm

)
= ulm + ω4x2

l

(
f l − Alulm

)
=

(
I − ω4x2

lAl
)︸ ︷︷ ︸

=:Ml(ω)

ulm + ω4x2
l I︸ ︷︷ ︸

=:Nl(ω)

f l, for m = 0, 1 . . . .

(4.55)

It can be easily seen that the iteration matrix Ml (ω) has the same eigenvec-
tors as the matrix Al.

Theorem 4.1.15. The matrix Ml(ω) := I−ω4x2
lAl has the same eigenvectors

as matrix A with eigenvalues

λl,j(ω) = 1− 4ω sin2(
jπ4xl

2
), for j = 1, . . . , Nl. (4.56)

By using this theorem we can show how the error components develop during
iterations.
Let ul∗ be the exact solution of (4.52) and ulm+1 the m + 1 iteration of the
damped Jacobi method (4.55).
Then the error em+1 is

em+1 = ul∗−ulm+1 = Ml(ω)em = Ml

(
Nl∑
j=1

αl,jm υ
l,j

)
=

Nl∑
j=1

αl,jmλ
j,lυl,j =

Nl∑
j=1

αl,j0

(
λl,j
)m

υl,j,

(4.57)
which is the form of iterative methods (4.10).
As we can read from the iterative error (4.57), each mode υl,j converges with
different speeds towards zero, dictated by the corresponding eigenvalue λl,j.
The choice of ω affects the eigenvalue distribution and with ω = 1

4
we have an

optimal dampening effect such that high frequency error components con-
verge towards zero the fastest, leaving a smooth error since the low fre-
quency components have the slowest rate of convergence.
Because of this property of "smoothing" the error, we call the damped Jacobi
method also smoother.
Also worth mentioning is that for a finer mesh grid (smaller 4xl) the eigen-
values are approaching 1 which means even less dampening on the smooth
and coarse modes. A finer discretization means higher computational cost
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but also slower convergence.

In order to decrease also the low frequency components of the error, we use
the coarse-grid correction. The idea is that a smooth error with only low
frequency components can be represented well on a coarser mesh grid and
is more oscillatory on a coarser grid. Oscillatory errors on the other hand
get aliased into smooth error on a coarser mesh. Hence we need to use
a smoother first to eliminate high order frequency components before and
then eliminate the low order frequency components which are high order
frequencies on the coarse grid. By repeating this on coarser grids, we can
eliminate both low and high frequency error components.

Definition 4.1.16. A map
F : RNl → RNl−1 (4.58)

is called a restriction operator from finer mesh grid Ωl to the coarser mesh
grid Ωl−1, if it is linear and surjective.

There are many ways for the restriction such that

ul−1 = Rl−1
l ul (4.59)

with restriction matrix Rl−1
l ∈ RNl−1×Nl but in this context just show the trivial

restriction matrix

Rl−1
l =


0 1 0

0 1 0

0 1 0
. . .

0 1 0

 (4.60)

and the linear restriction matrix

Rl−1
l =

1

4


1 2 1

1 2 1

1 2 1
. . .

1 2 1

 . (4.61)

The benefit of using the linear restriction is that the trivial restriction neglect
the values at the inbetween grid points such that information gets lost.
The opposite of the restriction is the prolongation where we map the solution
or error from a coarse grid Ωl−1 to a finer grid Ωl.

Definition 4.1.17. A map
G : RNl−1 → RNl (4.62)

is called a prolongation from Ωl−1 to Ωl, if it is linear and injective.
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An example for a prolongation matrix for

ul = P l
l−1ul−1 (4.63)

is a linear interpolation which give us the linear prolongation matrix

P l
l−1 =

1

2



1

2

1 1

2

1
. . .

1

2

1


∈ RNl×Nl−1 . (4.64)

For the sake of simplicity, we focus on the description of a two-grid method
which can be easily expanded by recursion to a multigrid method.
In the following, let

Ale
l = Al

(
ulm − ul∗

)
= rl (4.65)

be the defect equation. If we assume the error el to be smooth, we can
compute an approximation to the error by solving the coarser defect equation

Al−1e
l−1 = rl−1 (4.66)

and the transform it back to the finer grid.

Coarse-grid correction

After the high frequency components have been eliminated through smooth-
ing, the coarse-grid correction is applied in the following way:

1. Compute the residual: rl = fl − Alul.

2. Restrict the residual to the coarse grid: rl−1 = Rl−1
l rl.

3. Compute the error on the coarse grid by solving the system: Al−1el−1 =

rl−1.

4. Prolongate the error to the fine grid: el = P l
l−1el−1.

5. Update the approximation ul = ul + el.

Definition 4.1.18. Let ulm be an approximated solution of Alul = f l, then the
method with

ul,new
m = φCGCl

(
ulm, f

l
)

(4.67)

is called coarse grid correction.
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Lemma 4.1.19. [29] The coarse grid correction φCGCl is a linear consistent
iterative method with

MCGC
l = I − P l

l−1A
−1
l−1R

l−1
l Al (4.68)

and
NCGC
l = P l

l−1A
−1
l−1R

l−1
l . (4.69)

Lemma 4.1.20. [29] The coarse grid correction φCGCl is not convergent.

Two-grid method

With all the components defined, we can set up a two-grid method.
The two-grid method consists of a fixed number of pre-smoothing steps ν1

followed by a coarse grid correction, which then ends with additionally post-
smoothing steps ν2.

Definition 4.1.21. Let ν1, ν2 ∈ N0 with ν1 + ν2 ≥ 1. Let Sl be a linear iterative
scheme for the solution of Alul = fl and φCGCl be the coarse grid correction.
Then the method defined by

φ
TGM(ν1,ν2)
k = Sν2

l ◦ φ
CGC
k ◦ Sν1

l (4.70)

is called a two grid method with ν1 presmoothing and ν2 postsmoothing steps.

Although the coarse grid correction itself is not a convergent method, the
combination with the smoothing makes it convergent.

Theorem 4.1.22. [29] Considering the two grid method (4.70), if the smooth-
ing operator Sl is consistent, i.e Sl(u∗l ) = u∗l and convergent, then the two grid

method φTGM(ν1,ν2)
l is consistent and convergent.

The two-grid method algorithm is depicted in Algorithm 4.1.

Multigrid methods

Although two-grid methods are quite efficient, they are impracticable for
larger linear equation systems because the defect equation

Al−1e
l−1 = rl−1 (4.71)

needs be calculated. However the recursive application of the two-grid method
to the defect equation does not differ from applying the two grid method to
the original problem. By introducing more grids and recursively applying
the two-grid method until a direct solution is possible, leads to the multigrid
methods. Depending on the number of recursive two-grid steps γ > 0 we can
differentiate between different types of multigrid methods [28]. In practice,
only γ = 1 (V-cycle) and γ = 2 (W-Cycle) are used. The names arise from how
the two-grid steps move through the hierarchy of grids.
Algorithm 4.2 depicts the multigrid method.

156



Iterative Methods

Algorithm 4.1
two-grid method φTGM(ν1,ν2)

l

1: procedure Two-grid method
2: for i = 1, . . . , ν1 do
3: ul := Sl

(
ul, f l

)
.

4: end for
5: rl−1 := Rl−1

l

(
Alu

l − f l
)

6: el−1 := A−1
l−1r

l−1

7: ul := ul − P ll−1e
l−1

8: for i = 1, . . . , ν2 do
9: ul := Sl

(
ul, f l

)
.

10: end for
11: end procedure

Algorithm 4.2
multigrid method φMGM(ν1,ν2)

l

1: procedure Multigrid method φMGM
l (ν1, ν2)

2: if l = 0 then
3: u0 := A−1

0 f0

4: else
5: for i = 1, . . . , ν1 do
6: ul := Sl

(
ul, f l

)
.

7: end for
8: rl−1 := Rl−1

l

(
Alu

l
)

9: el−1
0 := 0

10: for i = 1, . . . , γ do

11: el−1
i := φ

MGM(ν1,ν2)
l−1

(
el−1
i−1, r

l−1
)

12: end for
13: ul := ul − P ll−1e

l−1
γ

14: for i = 1, . . . , ν2 do
15: ul := Sl

(
ul, f l

)
.

16: end for
17: end if
18: end procedure

Full multigrid method

All iterative methods such as the relaxation methods and the multigrid meth-
ods as previously presented require an initial guess ul on the finest grid. The
idea behind the full multigrid method (FMGM) is the application of the coarse
grids to improve the initial guess ul.
The main steps of the method are:

a) Solve A0u
0 = f 0 on Ω0 exactly.
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b) Prolongation of the solution to the next finer grid and smooth the solu-
tion.

c) Repeat (b) until an initial guess ul on the finest grid Ωl is calculated.

d) Apply the multigrid method with the new initial guess.

Full multigrid methods are of special interest to us because when extending
the idea of multigrid methods to non-linear problems, using a good initial
guess, which is already close to the solution, helps to reduce the number of
iteration steps, thus reducing computational costs. In regards to multigrid
methods as optimization methods to find minima, a good initial guess also
reduces the risk of getting trapped in a local minimum, which can be far
away from the desired minimum.

4.2 Solving Non-Linear Systems

Finding a solution to a non-linear system through a direct method as for linear
systems is often impossible and thus iterative methods must be used as well
[29].
The general non-linear equation problem is

F (x) =

 F1 (x1, . . . , xn)
...

Fn (x1, . . . , xn)

 = 0, (4.72)

for a sufficiently differentiable function F : Rn → Rn.
Any fixed point equation

F (x) = x

can be transformed into a root finding problem with

G(x) := F (x)− x.

If for (4.72) we have F (x) = Ax− b with square matrix A ∈ Rn×n and b ∈ Rn,
then we obtain a linear equation system which can be solved with the meth-
ods presented previously in this chapter.
Solving non-linear equations analytically, i.e with direct methods is often im-
possible, so iterative methods must be used.
For this reason we recall some background on iterative methods of the form

xk+1 = φ
(
xk
)

(4.73)

with iteration function φ : Rn → Rn with iteration sequence
(
xk
)
k∈N0

.
One can already use the fixed point equation F (x) = x and apply the intuitive
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iterative method xk+1 = F (xk).
Generally there exist many different iterative methods, each converging at
varying speeds towards an appropriate approximated solution.
To define the speed of convergence we use again Banach Fixed Point theorem
4.1.4:

Definition 4.2.1. [113] The iteration sequence
(
xk
)

converges at least with
order p ≥ 1 towards x∗ if there exist a constant K ≥ 0 (for p = 1 K < 1) and
an index k0 such that for all k ≥ k0 the inequation

‖ xk+1 − x∗ ‖≤ K ‖ xk − x∗ ‖p (4.74)

holds. For p = 1 we have linear convergence and for p = 2 quadratic conver-
gence.

Based on the definition of iterative methods we can reformulate theorem
4.2.1 and additionally define local convergence and convergence domain.

Definition 4.2.2. Let φ : Rn → Rn be an iteration function for the fixed point
x∗, then there is a neighbourhood U (x∗) ⊂ Rn and a p ≥ 1 with a constant
K ≥ 0 (with K < 1 for p = 1), such that for all x ∈ U (x∗)

‖ φ (x)− x∗ ‖≤ K ‖ x− x∗ ‖p (4.75)

hold. Furthermore there exists a neighbourhood V (x∗) ⊂ U (x∗) such that
the iterate xk+1 = φ

(
xk
)

converges for every initial guess x0 ∈ V (x∗) with
convergence speed p towards x∗. We call such iteration local convergent
with convergence domain V (x∗).

With these tools at hand we can now define the Newton methods which are
widely used for solving non-linear equation systems [29, 41, 113].

4.2.1 Newton’s Method

The main idea of the Newton’s method to find the root of the non-linear equa-
tion system F (x) = 0 is to linearize F at the current iterate xk. Applying the
first order Taylor expansion on F about the point xk we obtain

F (x) ≈ T 1
F (xk, x) = F (xk) + JF (xk)

(
x− xk

)
= 0 (4.76)

with Jacobian matrix JF
(
xk
)
∈ Rn×n.

Now instead of solving F (x) = 0 we want to solve the linearized version
T 1
F (xk, x) = 0. Defining the next iterate as xk+1 = x gives us Newton’s method

xk+1 = xk − JF
(
xk
)−1

F
(
xk
)
. (4.77)
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For the termination of the iteration, there are two reasonable choices: ‖4x
k+1‖
‖x0‖

or ‖F (xk)‖
‖F (x0)‖ .

We can define the algorithm of Newton’s method for non-linear equation with
a termination condition τk > 0 in the following way:

• Choose an initial guess x0 ∈ Rn.

• Do

– Solve the linear equation system

JF
(
xk
)
4xk+1 = −F

(
xk
)

(4.78)

for 4xk+1 = xk+1 − xk.
– Update xk+1 = xk +4xk+1

• While ‖4x
k+1‖
‖x0‖ < τk or ‖F (xk)‖

‖F (x0)‖ < τk.

With Newton’s method we have transformed the non-linear equation system
into an iterative method where an iteration sequence of linear equation sys-
tems must be solved. This can be done with direct methods but also with iter-
ative methods as we have already presented in Chapter 4. Newton’s methods
in which the linear equation systems (4.78) are solved only approximately and
in some unspecified manners are called inexact Newton’s method [40].
With the purpose of analyzing the convergence properties of the Newton’s
method (4.77) we can make use of theorem 4.2.1.
From this it is possible to show that under certain assumptions on F , an initial
guess x0 that is sufficiently close to a root x∗ Newton’s method will converge
at a linear speed of convergence.
Under some additional conditions also superlinear convergence speed up to
quadratic convergence speed (1 < p ≤ 2) can be guaranteed. We refer to [40,
41] where are more detailed discussion about convergence theorems can be
found.

The main difficulties in iterative methods for solving non-linear equation sys-
tems are that , firstly, it can be quite difficult to foresee to which solution x∗

the iterative method converges to for a given initial guess x0. Secondly, the
results about the speed of convergence do not indicate how close the initial
guess x0 has to be to the solution x∗ to guarantee convergence.
Some answers to this equation can be given by the Kantorovich’s theorems
[29].
Lastly, another issue concerns the computation of each iteration xk+1 which
involves solving the linear equation system JF (xk)4xk+1 = −F (xk).
For complicated functions, the derivation of F , i.e the derivation of the Jacobi
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matrix can be challenging, computational demanding or even analytically im-
possible.
For these reasons the idea is to not use the exact Jacobian matrix JF (xk)

evaluated at xk but approximations which are good enough to guarantee con-
vergence of Newton’s method.
These methods are called Quasi-Newton Methods.
There is a variety of Quasi-Newton methods, each differing for the chosen
approximation of the Jacobi matrix JF (xk).
Some algorithms are using a fixed Jacobian J (

Fx
0) for the whole iteration pro-

cess. Another idea is Broyden’s method [29], which extends the idea to cal-
culate only JF (x0) but then to update it by a sequence of matrices B1, B2, . . .

with the formula

Bk+1 = Bk +

(
F (xk+1)− F (xk)−Bk

(
xk+1 − xk

))
(xk+1 − xk)T (xk+1 − xk)

(
xk+1 − xk

)T
. (4.79)

It can be shown that under certain assumptions, that Broyden’s method also
converges superlinearly [41].

4.2.2 Non-Linear Multigrid Method

In Section 4.1.3 we have presented with multigrid methods, an iterative
method to solve linear equation system by recursively solving the residual
equation on different grids, using relaxation method to dampen the high fre-
quency error components and apply a coarse grid correction in order to de-
crease the low frequency error components as well.
This method works because the residual equation (4.65) is linear.
An application of multigrid methods for non-linear equation systems would
greatly benefit from the advantages given by the nature of multi grid meth-
ods such as robustness and accelerated convergence.
There are two main approaches to apply the multigrid methods to non-linear
equation systems.
The first is to use the linear multigrid method to solve the linear equation
system that arises from non-linear optimization methods, such as Newton’s
method, which is called Newton-Multigrid method (Newton-MG) [79, 138].
The other approach is to apply the idea of multigrid directly to the non-linear
equation system. This approach is also called Full Approximation Scheme
(FAS) [23, 69]. Newton-MG methods have already been used in a wide area
of elliptic and parabolic non-linear problems [79] with only little theory exist-
ing about convergence of these kind of methods (see [138]).
We refer to the indicated literature for a more detailed investigation of Newton-
MG method and the recent paper [22] where a comparison between FAS and
Newton-MG is made.
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We consider the discrete non-linear equation system

Fl(xl) = fl (4.80)

with non-linear operator Fl and exact solution vector xl defined on different
discretization grids Ωl. Let yl be the approximation of the fine-grid equation

Fl(xl) = fl. (4.81)

We also define the error as el := xl − yl with residual rl = fl − Fl(yl).
Since F is non-linear, we cannot use the residual equation since F (e) 6= r and
use instead

Fl(xl)− Fl(yl) = rl ⇔ Fl(yl + el)− Fl(yl) = rl. (4.82)

The coarse-grid residual equation is then defined as

F2l(y2l + e2l)− F2l(y2l) = r2l. (4.83)

By applying the restriction operator I2l
l : Ωl → Ω2l, as in the linear multigrid

method (4.59), on the fine-grid residual rl and approximated solution yl to the
coarse-grid Ω2l we obtain

r2l = I2l
l rl = I2l

l (fl − Fl(yl)),

y2l = I2l
l yl.

(4.84)

Substituting (4.84) into the coarse-grid residual equation (4.83) leads to

F2l(I
2l
l yl + e2l︸ ︷︷ ︸

=x2l

) = F2l(I
2l
l yl) + I2l

l (fl − Fl(yl))︸ ︷︷ ︸
=f2l

.
(4.85)

After solving (4.85) for x2l we get the coarse-grid error

e2l = x2l − I2l
l yl, (4.86)

which then can be prolongated with the prolongation operator I l2l : Ω2l → Ωl

to correct the fine-grid approximation yl

yl,new = yl + I l2le2l. (4.87)

This describes the two grid Full Approximation Scheme (FAS).
If we apply (4.87) to the non-linear function Fl

Fl(yl,new) = Fl(yl + I l2le2l), (4.88)

we can already assume the idea of using FAS as a non-linear optimization
method such that

Fl(yl,new) = Fl(yl + I l2le2l) ≤ Fl(yl), (4.89)
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which assumes a monotone decrease of the function Fl (objective function in
the optimization context).
Sufficient conditions for convergence and usage of FAS as a non-linear opti-
mization method can be found in [20, 112]. We want to remark that as for the
linear multigrid methods, a relaxation operator (i.e. smoother) Sl for solving
the non-linear system in (4.85) is required to ensure that the error is smooth
before prolonging and restricting it to the finer grids (resp. coarser grids).
There is a wide variety of possible non-linear smoothers such as regular-
ized Newton-method, Levenberg-Marquardt method, non-linear Gauß-Seidel
method [111, 132]. In this work for all the numerical simulations the regu-
larized Newton-methods as smoother Sl have been used.
As with the linear equivalent, it is only necessary to apply the smoothing
a couple of times to smooth the error sufficiently enough to apply FAS. We
depicted the algorithm of FAS in Algorithm 4.0, where the two-grid FAS is
recursively applied in order to solve the non-linear equation (4.85).
Also here V- and W-cycles can be used as in linear multigrid methods.
As for the choice of smoother, it heavily depends on the non-linear equation
that is being solved. We refer to [20] where different non-linear smoothers
are being used for different non-linear problems.

Algorithm 4.1 Full Approximation Scheme in pseudocode

1: procedure FAS(l, yjl , fl, ν)
2: Set y

′

l = Sνl y
j
l

3: Set y
′

2l = I2l
l y
′

l

4: Set f2l = F2l(I
2l
l yl) + I2l

l (fl − Fl(y
′

l))

5: if l = 2 then Solve F2l(x2l) = f2l

6: elseSet x2l = FAS(2l, y
′

2l, f2l, ν)

7: end if
8: return yj+1

l = Sνl (yl + I l2le
2l)

9: end procedure

We already want to pre-empt that although FAS can be used to solve non-
linear equation system quite efficiently, it can be also used as a minimization
method for non-linear optimization problems. Indeed, under appropriate as-
sumptions such that the coarse grid correction provides a descent direction
and combining this with a minimization smoothing method such as regular-
ized Newton-method with step size as a line search methods to ensure Wolfe
conditions (see next Chapter 5, global convergence can be obtained. We refer
again to Borzi [20] for a deeper analysis.
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Chapter 5

Optimization Techniques

Optimization problems arise in many different fields from physics, biology to
computer science, engineering and financials.
In its core, an optimization problem is the problem of finding the best solu-
tion among a set of possible solutions and mostly is formulated as minimiz-
ing/maximizing a function.
These functions are objectives, specific to the context of the problem and
depend on certain characteristics such as energy in physical systems, profit
and time in financial and economic systems, and weather forecast.
Each objective function has characteristics which are parameters and the
goal of any optimization problem is to find values of the parameters that op-
timize the objective functions, i.e minimize/maximize them.
When these parameters are restricted in some way, the problem is called con-
strained optimization problem, otherwise unconstrained.
The goal of finding the ideal parameters consists constructing first of all an
appropriate objective function for the problem. After such an objective func-
tion is formulated, an optimization method must be applied to find the so-
lution. There exist a variety of optimization methods and the best choice
depends on nature of the problem.
Once a solution is found, it is necessary to be able to determine whether a
minimum/maximum is found. So called optimality conditions can be used for
this.

The main references are [4, 111, 132] from which most of the contents are
taken.
Mathematically we can formulate the minimization problem (the transforma-
tion to a maximization problem is straightforward) in the following manner:

Definition 5.0.1 (Minimization problem). Let f : D → R be the objective
function with subset D ⊂ Rn with vector x ∈ Rn as the parameters. Let



the vectorial function c : D → Rc be the constraints that are placed on the
parameters x. Then the general minimization problem is defined as

min
x∈Rn

f (x) subject to

 ci (x) = 0, i ∈ E ,

cj (x) ≥ 0, j ∈ I
(5.1)

with I, E being the sets of indices for inequality (resp. equation) constraints.

For a more compact notation we define the feasible set

Ω := {x ∈ Rn|ci (x) = 0, i ∈ E , cj (x) ≥ 0, j ∈ I} ,

such that (5.1) can be rewritten as

min
x∈Ω

f (x) . (5.2)

The minimization problem (5.1) can be classified into many categories ac-
cording to the type and structure of objective function f and constrained
functions ci (linear, convex, non-linear, discrete) and so on.

In our work we devote ourselves with the parameter estimation of partial
differential equations, we focus on continuous non-linear objective functions
and categorize optimization problems into the two categories: unconstrained
and constrained optimization problems.
Constrained optimization problems arise from problems where restrictions
in form of equations and inequalities ci(x) have been put on parameters.
This depends on the formulation of the model. Often constrained optimiza-
tion problems can be transformed into unconstrained optimization problems
and be solved as such, as it is commonly used in the Lagrangian Multiplier
method. However, search steps taken by unconstrained optimization meth-
ods may be not acceptable for the constrained optimization problem, which
often leads to a lack of convergence. This is referred to as the Maratos effect
[136].
Another distinction about the optimization method must be made between
global and local optimization methods for which we first need to define two
types of minima.

Definition 5.0.2 (Local minima). Let f : Rn ⊃ D → R be a real valued
function. Then x∗ ∈ Rn is called local minimum of f if there is an ε > 0 such
that

f (x∗) ≤ f (x) , for all x ∈ B(x∗, ε) (5.3)

with open ball B(z, ε) := {x ∈ Rn :‖ x− z ‖< ε}.
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Definition 5.0.3 (Global minima). Let f : Rn ⊃ D → R be a real valued
function. Then x∗ ∈ Rn is called global minimum of f if

f (x∗) ≤ f (x) , for all x ∈ D. (5.4)

Every global minima is therefore also a local minima.

As expected, global optimization methods aim to find global minima. Well
known global optimizers are simulated annealing, a generic probabilistic
metaheuristic method, evolutionary algorithms and swarm-based optimiza-
tion algorithms such as particle swarm and ant colony. All these methods
are using very different approaches to find the global minimum of an objec-
tive function but they all have in common that the application procedure is
far more difficult and computational demanding and as such usually much
slower than local optimization methods [74, 150].
Local optimization method on the other hand are far easier to apply, com-
putationally less demanding but do not guarantee that the minima found is
the global minimum. Only for an important class of minimization problems,
such as convex problems, where all local minima are global minima, can this
feature be guaranteed.
Despite this, we will investigate local optimization methods since for good
initial guesses of the optimal solutions/parameters, they often deliver suffi-
ciently good and optimal results.
The optimization methods we will investigate are all iterative and begin with
an initial guess x0 of the parameters. The iteration tries to improve the value
of the objective function f until a local minimum is reached.
Important for the optimization method are the following three properties:

• Robustness: The method should work well on a variety of different
objective functions.

• Computational cost: An appropriate solution must be computed in
reasonable time and require reasonable storage.

• Accuracy: The method should not be too sensitive to errors in the ob-
servation data.

Identifying a local minimum solely with definition 5.0.2 is rather difficult but
important for iterative optimization methods to verify when a sufficient solu-
tion is reached.
For smooth objective functions f we can derive conditions that can be used
to find possible local minima or to decide whether a solution is in fact a local
minimum.
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Definition 5.0.4 (Necessary and sufficient optimality condition). We call C
a necessary optimality condition for a feasible point x of the optimization
problem (5.2) if

x is optimal =⇒ C is satisfied (5.5)

and C is called sufficient optimality condition if

C is satisfied =⇒ x is optimal. (5.6)

We make a further classification of the optimality condition between first or-
der conditions if first derivatives of the objective function f are involved and
second order conditions if second or higher derivatives are involved.

We now state optimality conditions for unconstrained problems which are
elementary for any minimization/maximization problems.

Theorem 5.0.5 (First-Order necessary conditions [111]). Let f : D → R be
continuously differentiable and x∗ ∈ Rn be a local minimum, then

∇f(x∗) = 0. (5.7)

Points x ∈ Rn with ∇f(x) = 0 are also called stationary points.

This theorem also shows that finding local minimum can be achieved by solv-
ing a non-linear equation system (5.7). Nevertheless it is only a necessary
condition. An example are saddle points which are stationary points and
solve (5.7) but are not local extrema (minima or maxima).

Theorem 5.0.6 (Second-order necessary conditions [111]). Let f : D → R
be a smooth function and the Hessian matrix ∇2f continuous in an open
neighbourhood of the local minimum x∗ ∈ Rn. Then ∇f(x∗) = 0 and ∇2f(x∗)

is positive semidefinite.

The next theorem gives sufficient conditions on the derivatives of the objec-
tive function f that guarantee that a point x∗ is a local minimum. We note
that the following condition is not necessary as a local minimum that fulfils
the second-order necessary condition could fail to satisfy the second order
sufficient condition.

Theorem 5.0.7 (Second-order sufficient conditions [111]). Let f : D → R
be a smooth function and the Hessian matrix ∇2f continuous in an open
neighbourhood of the x∗ ∈ Rn with ∇f(x∗) = 0 and ∇2f(x∗) positive definite.
Then x∗ ∈ Rn is a local minima.
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The second-order conditions foreshadows that the information of the Hes-
sian matrix of the objective functions can be used in optimization methods
and probably lead to faster and better convergence which we will see later.
We want to mention at this point that for nonsmooth objective functions the
identification of local minima must be done with other methods. For func-
tions with nondifferentiable points we can examine the generalized gradient
[14], a generalization of the concept of gradient to the nonsmooth case.

All iterative optimization methods begin with an initial guess x0. The closer
the initial guess is to the actual optimal solution, the better and faster the
convergence usually is.
For a starting point x0 the optimization method constructs a sequence of it-
erations x0, x1, . . . , xk, xk+1, . . . that also uses the information on the objective
function f(xk) and possibly also from earlier iterates until an appropriate stop
criterion has met. Examples are that the changes between iterations are suf-
ficiently small ‖ xk+1 − xk ‖< δ.
Most optimization methods are monotone, which means they require that
each iteration decreases the value of the objective function further f(xk+1) ≤
f(xk). Although non-monotone methods exist, we do not discuss them in the
following.
There are two fundamental strategies on how the new iterate xk+1 is being
derived: Line search and trust region methods [111].

In line search methods first determines a descent direction pk ∈ Rn along
which the value of the objective function f is being reduced. Afterwards an
appropriate step size αk must be computed to determine how far to move
along the direction of pk to arrive at the next iterate xk+1

min
αk>0

f (xk + αkpk) . (5.8)

The other strategy is trust region. Here a model function mk is being con-
structed having a behaviour near the current iteration xk similar to the ob-
jective function f . Then the sub-problem

min
p∈Rn

mk (xk + p) (5.9)

is being solved for a p ∈ Rn instead where xk + p lies inside some region
around xk.
In other words, line search methods fix a search direction pk and then search
for an appropriate step size αk whereas trust region method fix the maximum
search distance first and then searches for an appropriate descent direction
p.
An example of a trust region method are the Levenberg-Marquardt method
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[132] where the objective function is iteratively approximated.
In the following section we will investigate line search methods to which
steepest descent, conjugated gradient and Newton methods belong to.

5.1 Non-Linear Optimization (Line-Search)

In line search methods [111], each iteration is computed by a search direction
pk and an appropriate step length αk > 0

xk+1 = xk + αkpk, (5.10)

such that
f(xk+1) ≤ f(xk). (5.11)

An intuitive way to analyze the rate of change in f is the application of the
Taylor approximation

f(xk + αp) ≈ f(xk) + αpT∇f(xk) +O (α) . (5.12)

By setting the convention of normalized search directions pk with ‖ pk ‖= 1

we can observe in (5.12) that the highest decrease of f can be obtained at

min
p
pT∇f(xk).

Using the definition of scalar product we have

pTk∇f(xk) =‖ ∇f(xk) ‖ cos(θ). (5.13)

Intuitively we would obtain the minimum by choosing θ = π such that cos (π) =

−1, which corresponds to

pk = − ∇f(xk)

‖ ∇f(xk) ‖
, (5.14)

which is the steepest descent method.

More generally any descent direction pk can be used as search direction as
long as the next iteration xk+1 decreases the value of the objective function
properly.
If we want to fulfil the condition f(xk +αkpk) ≤ f(xk), the necessary condition
for the choice of the search direction is

pTk∇f(xk) =‖ pk ‖‖ ∇f(xk) ‖ cos(θk) < 0, (5.15)
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for sufficiently small value αk ∈ R>0 to ensure that the higher order terms of
the Taylor expansion of f do not influence the rate of decrease too much.
In the literature [4, 111, 132] most search directions can be summarized into
the category

pk = −B−1
k ∇f(xk) (5.16)

with matrix Bk ∈ Rn×n being symmetric and nonsingular.
For the steepest descent method this means for matrix Bk = I being the iden-
tity matrix. In the following sections we will see that also Newton’s method
and non-linear conjugated gradient methods can be categorized as search di-
rections methods.
Having now defined appropriate search directions, we will focus on the ques-
tion of finding an appropriate step length αk that is not too large so that we
do not overshoot and not continuously decreasing the objective function f in
each iteration k + 1, but also not too small to avoid the convergence rate to
be too slow to be feasible.
The ideal choice would be to solve the one-dimensional minimization problem

min
αk>0

f(xk + αkpk) (5.17)

but this involves high computational costs to solve a minimization at each
iteration.
A simpler heuristic search would be to try out a sequence of possible step
lengths (αk) and to stop at an acceptable one that fulfils the condition f(xk +

αkpk) < f(xk).
However this will not guarantee convergence since we are not always able to
have a sufficient decrease in the objective function f .
Another inexact line search condition to find an appropriate step length αk
that sufficiently decreases the objective function f along the search direction
pk is

f(xk + αkpk) ≤ f(xk) + c1α∇f(xk)
Tpk, (5.18)

for a c ∈ (0, 1), which is also called Armijo condition [111].
The condition (5.18) means that a decrease of the objective function needs to
be proportional to the step length αk and the directional derivative∇f(xk)

Tpk.
Although condition (5.18) gives us a sufficient decrease, the inequality is
satisfied for many small values of αk.
In order to exclude short step lengths, a second condition is introduced

∇pkf(xk + αkpk)
T ≥ c2∇f(xk)

Tpk, (5.19)

for a c2 ∈ (c1, 1), which is called curvature condition.
Figuratively this condition means that for strongly negative slopes at the new
iteration point xk+1 we have the indication that we can reduce the objective
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function f even further by moving further along the search direction pk and
for slightly negative or even positive slopes, that we cannot expect a further
decrease of the value of the objective function by moving further along the
search direction.
Both conditions (5.18) and (5.19) are known as the Wolfe conditions and are
being used to find and verify an appropriate step length during the iteration.

5.1.1 Newton and Quasi-Newton Method

In the previous chapter we have introduced Newton’s method as an iterative
method to solve non-linear equation system of the form

f(x) = 0. (5.20)

If applied to the gradient equation ∇f(x) = 0, Newton’s method would give
us as solution a local minima.
Linearizing the gradient equation, we obtain

∇f(xk + p) ≈ ∇f(xk) + pT∇2f(xk). (5.21)

Assuming that the Hessian matrix∇2f(xk) of the objective function is positive
definite, we can obtain the Newton-direction

pk = −∇2f(xk)
−1∇f(xk). (5.22)

Regarding the general search directions (5.16) the Newton-direction is de-
fined with Bk = ∇2f(xk).
The fact that ∇2f is positive definite ensures that the Newton-direction sat-
isfy the descent property condition ∇f(xk)

Tpk < 0.
For the case where the Hessian matrix is not positive definite, certain modi-
fications must be made to enforce a descent direction [111].
An advantage of the Newton-direction is the superlinearly convergence rate.
The disadvantage is that the calculation of the Hessian matrix can be compu-
tationally expensive or not even analytically possible.
Similar to the non-linear equation setting, quasi Newton search direction can
be applied to use approximations of the Hessian matrix in the same way as in
the Boyden methods [41].

5.1.2 Non-Linear Conjugated Gradient Method

Lastly we present the non-linear conjugated gradient method as a line search
method for the non-linear optimization problem.
The idea behind the non-linear conjugated gradient method is to extend the
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linear CG-method, which minimizes the energy functional, to general non-
linear functions f .
As the linear CG-method was an improvement of the gradient descent method
in the linear case, also the non-linear CG-method can be regarded as an im-
provement to the steepest descent method (5.14).
Similar to the iteratively chosen search directions of the linear-CG-method
(4.44), we have

p0 = −∇f(x0) (5.23)

and
pm = −∇f(xm) + βm−1pm−1 (5.24)

with coefficients βm ∈ R and we perform a line search for

αm = arg min
α
f(xm + αmpm), (5.25)

such that we obtain the new iterate

xm+1 = xm + αmpm. (5.26)

Firstly, unlike for the linear case where the coefficients βm were clearly de-
termined by the A-conjugation requirement (4.40) to ensure that each further
iteration xm+1 is optimal in regards to all previous search directions, this is
not the case for general non-linear functions f . In the literature there are
many choices for the coefficients βm and we refer to [65] for more details
about this topic.
All the mentioned formulas for βm are equivalent for the energy function F

(4.24).
Fletcher and Reeves [51] were the first to propose coefficients defined as

βm =
‖ ∇f(xm) ‖2

‖ ∇f(xm−1) ‖2
, (5.27)

that are proven to make the non-linear CG-method globally convergent for
non-linear functions f .
Secondly, αm must be determined by a line search method in (5.25) as for the
other presented methods.
This is not necessary for the energy function F because the optimal step
length can be explicitly determined by the formula (4.42).

5.2 Non-Linear Optimization with Constraints

In this section we will extend the theory of unconstrained optimization prob-
lems (5.2) where x ∈ Rn to the constrained case subjected to the feasible
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set x ∈ Ω for the purpose to derive conditions of solutions x∗ similar to the
conditions defined for the unconstrained problems.

Definition 5.2.1 (Local solution [111]). A vector x∗ ∈ Ω is called local so-
lution of (5.2) if there is a neighbourhood N of x∗ such that f(x) ≥ f(x∗)

∀x ∈ N ∩ Ω.

Definition 5.2.2 (Lagrangian [111]). The function defined as L : Rn ×Rm →
R for the constrained optimization problem (5.2) with

L (x, λ) := f (x)−
∑
i∈E∪I

λici (x) (5.28)

is called Lagrangian function L with Lagrangian multipliers λi ∈ R.

Definition 5.2.3 (LICQ [111]). Let x∗ ∈ R and the active set A(x∗) defined as

A(x) = E ∪ {i ∈ I|ci(x) = 0} , (5.29)

then we say the linear independence constraint qualification (LICQ) holds if
the set of active constraint gradients {∇ci(x∗, i ∈ A(x∗)} is linearly indepen-
dent.

Theorem 5.2.4 (First-Order Necessary Condition [111]). Let x∗ ∈ Ω be a
local solution of (5.2) and LICQ holds at x∗. Then there is a Lagrange mul-
tiplier vector λ∗ := (λ∗i )i∈E∪I such that the following conditions, also called
Karush-Kuhn-Tucker conditions, hold at (x∗, λ∗)

∇xL (x∗, λ∗) = 0,

ci (x
∗) = 0, ∀i ∈ E ,

ci (x
∗) ≥ 0, ∀i ∈ I,

λ∗i ≥ 0, ∀i ∈ I,
λ∗i ci (x

∗) = 0, ∀i ∈ E ∪ I.

(5.30)

Definition 5.2.5 ([111]). For a point x∗ ∈ Rn and the active set A (x∗) (5.29),
we define the set F1 and its subset F2 (λ∗) ⊂ F1 with Lagrange multiplier λ∗i
as

F1 =

{
αd|d ∈ Rn, α > 0, dT∇ci (x∗) = 0, ∀i ∈ E

dT∇ci (x∗) ≥ 0, ∀i ∈ A (x∗) ∩ I

}

F2 (λ∗) =
{
w ∈ F1|∇ci (x∗)T w = 0,∀i ∈ A (x∗) ∩ I with λ∗i > 0

}
.

(5.31)

Theorem 5.2.6 (Second-Order Necessary Condition [111]). Let x∗ ∈ Ω be
a local solution of (5.2) and LICQ condition holds. Further let the Lagrange
multipliers λ∗i ∈ R satisfy the Karush-Kuhn-Tucker conditions (KKT) (5.30),
then

wT∇xxL (x∗, λ∗)w ≥ 0, ∀w ∈ F2 (λ∗) . (5.32)
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Theorem 5.2.7 (Second-Order Sufficient Condition [111]). Let x∗ ∈ Rn be a
feasible point for the optimization problem (5.2) and the Lagrange multipliers
λ∗i ∈ R satisfy the KKT conditions (5.30). If

wT∇xxL (x∗, λ∗)w > 0, ∀w ∈ F∈ (λ∗) , w 6= 0, (5.33)

then x∗ is a strict local solution for the constrained optimization problem
(5.2).

Having derived optimality conditions to describe solutions of constrained op-
timization problems we cast an eye at iterative algorithms that can solve such
problems.
Although algorithms for constrained optimization exist, we will only present
algorithms which take use of the already introduced optimization methods
for the unconstrained case and adapt them for the constrained case.
The essential idea behind the following methods is to transform the con-
strained optimization problem into a sequence of unconstrained sub prob-
lems.
This motivates penalty methods, where an additional term for each constraint
ci (x) is added to the objective function f of the optimization problem.
These additional terms are positive whenever the current x violates the con-
straints, thus increasing the value of the objective function, and in general
multiplied by a sequence of so called penalty parameters µk > 0 which in-
creases for each iteration and penalizes violations of the constrained more
severely.

Definition 5.2.8 (Penalty Method [111]). LetQ (x, µ) be the quadratic penalty
function defined as

Q (x, µ) := f (x) +
1

2µ

∑
i∈E

c2
i (x) +

1

2µ

∑
i∈I

(
[ci (x)]−

)2
(5.34)

with [ci (x)]− = max (−ci (x) , 0), and penalty parameter µ > 0 then the penalty
method can be defined as indicated in Algorithm 5.0 with a penalty parameter
sequence {µk} with µk ↘ 0 for k →∞.

The simplicity of the penalty methods comes with some disadvantages.
The minimization of Q (x, µk) becomes more difficult when µk decreases and
the Hessian ∇2

xxQ (x, µk) ill-conditioned when we are getting closer to a local
minima.

Theorem 5.2.9 ([111]). Let x∗k be the exact global minimum of Q (x, µk) of
the penalty method. Then for every sequence with x∗k → x∗ for k → ∞, x∗ is
the solution of the constrained optimization problem (5.2).
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Of course the result of theorem 5.2.9 only holds when in each iteration k the
global minimum is calculated which is not practical.
Most of the time iterative methods for the minimization as the one presented
in the previous sections are being used to calculate inexact minimum xk∗ after
a certain amount of iterations such that

‖ ∇Q (xk∗) ‖≤ τk. (5.35)

Theorem 5.2.10 ([111]). If the tolerance τk > 0 satisfies lim τk→∞ = 0 with
penalty parameter sequence µk ↘ 0,then for all sequences {xk}with lim

k→∞
xk =

x∗ at which the constraint gradients ∇ci (x∗) are linearly independent, x∗ sat-
isfies the KKT conditions (5.30). Then for an infinite subsequence K with
lim
k∈K

xk = x∗

lim
k∈K
−ci (xk)

µk
= λ∗i , for all i ∈ E (5.36)

with λ∗ satisfying the KKT conditions as well.

Algorithm 5.1 Penalty Method

1: procedure Penalty Method (µ0 > 0, tolerance τ0 > 0)
2: for k = 0, 1, 2, . . . do
3: Calculate xk = arg minQ(x, µk)

4: Update µk+1 ∈ (0, µk)

5: end for
6: end procedure

In an effort to reduce the ill-conditioning of the minimization problems within
the penalty method for each iteration k, another term is being added to the
penalty function to transform the objective function into a Lagrangian func-
tion with the penalty term added to it.

Definition 5.2.11 (Augmented Lagrangian Method [111]). Let LA (x, λ, µ) be
the augmented Lagrangian function defined as

LA (x, λ, µ) := f(x)−
∑
i∈E

λici (x) +
1

2µ

∑
iE

ci (x)2 (5.37)

with penalty parameter µ > 0 and Lagrangian multiplier λ. Then the aug-
mented Lagrangian method can be defined as described in Algorithm 5.1.

The major advantage of the augmented Lagrangian methods over penalty
methods is that the convergence does not require the penalty parameter µ
be too small, thus reducing ill conditioning induced by too small µ’s.
We refer to [111] where the convergence theorems for the augmented La-
grangian method can be found and how to extend the method for inequality
constraints with the introduction of slack variables.
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Algorithm 5.2 Augmented Lagrangian Method

1: procedure ALM (µ0 > 0, tolerance τ0 > 0)
2: for k = 0, 1, 2, . . . do
3: Calculate xk = arg minLA(x, λk, µk)

4: Update λk+1
i = λki −

ci(xk)
µk

.
5: Choose µk+1 ∈ (0, µk)

6: end for
7: end procedure
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Chapter 6

Inverse Problem: Parameter
Estimation

The main purpose of a mathematical model is to accurately describe the real
world problem it was derived for, such as our model for the OOC laboratory
experiment (see Section 1.5) that describes the interactions between immune
cells and tumour cells on the microfluidic chip environment. It contains as-
sumptions about the intrinsic biological mechanisms such as chemotaxis. All
these models contain model parameters such as diffusivity coefficients D,
cellular drift velocity k1 and many other parameters which are all specific to
the type of cells and the environmental setting.
An operator F which maps the model parameters to the data which the model
predicts is called forward operator and the problem of calculating a solu-
tion based on the model is called forward problem.
We already presented finite difference schemes to solve the forward problem
for our mathematical model in Section 3.
A model is considered "good" in the sense that the data predicted by the
model should be coherent with the observation and measurements made of
the real problem.
The inversion of a forward problem is its inverse problem. Instead of using
the model with its problem defining model parameters to predict data, we
want to determine the specific model parameters that were involved to pro-
duce the data that have been made available in experiments.
In other words in the forward problem we want to know the effects, given
the causes and in the inverse problem we want to know the causes given the
effects.
The aim of this chapter in regards to our mathematical model of the OOC
(1.45) is that with the observation data of the laboratory experiment on the
OOC, we want to find appropriate model parameters such that it successfully
describes the dynamics observed in the experiment.



Introduction to Parameter Estimation

This kind of inverse problem is also called parameter estimation problem to
which the following sections are devoted to.

In the first part of this chapter we will give a brief introduction about in-
verse problems and the challenges of solving them and continue to appro-
priately formulate the parameter estimation problem as in inverse problem.
What follows after are techniques such as regularizations that are designed
to improve the parameter estimate. In order to control their effectiveness
appropriate regularization parameters are required which need to be deter-
mined.
Afterwards we will present several parameter estimation methods designed
to recover the model parameters of convection-diffusion equations and mod-
ify them in order to be adaptable for the model calibration of the OOC-model.

6.1 Introduction to Parameter Estimation

As we have already thoroughly investigated, the approximated solution of
partial differential equations by means of finite different schemes is straight-
forward with the established definitions of consistency, stability and conver-
gence from Chapter 2.
Inverse problems on the other hand frequently suffer from mathematical
problems which do not fulfil Hadamard’s definition of well-posedness [64].

Definition 6.1.1 (Hadamard). A problem is well-posed if the following three
properties hold

• Existence: For all suitable data, a solution exist.

• Uniqueness: For all suitable data, the solution is unique.

• Stability: The solution depends continuously on the data.

A problem that violates any of these properties of well-posedness is called
ill-posed problem.

Inverse problems are usually ill-posed and violate one or more properties of
well-posedness [48].
Nevertheless not all violations possess the same drastic significance. The vio-
lation of the existence of solutions can be avoided by relaxing the definition of
solution for exact data, on the other hand for data that already contain noise,
produced by measurement and observation errors, discretization errors and
others, the inverse problem needs to be regularized and hence the solution
will be altered.
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The violation of uniqueness is a more severe problem. If more than one so-
lution exists, some additional requirements must be made to choose an ap-
propriate solution. In physical models, this involves for example positivity,
maximal entropy or a minimal norm.
The violation of stability is the severest issue among the three properties in
the numerical context and is being found when the solution of the inverse
problem does not depend continuously on the data which creates instabili-
ties in numerical methods designed to solve them.
In the following sections we restrict our work to the parameter estimation
problem of the convection-diffusion equation

∂tu(x, y, t) = D4u(x, y, t)− div (v(x, y, t)u(x, y, t)) (6.1)

with diffusion coefficient D ∈ R>0 and velocity field v ∈ C2.
The initial conditions are defined as

u (x, y, 0) = u0 (x, y) , for (x, y) ∈ Ω (6.2)

and homogeneous Neumann boundary conditions

∂u

∂n
(x, y, t)

∣∣∣∣
∂Ω

= 0, for (x, y, t) ∈ ∂Ω× [0, T ). (6.3)

The numerical solution u(xi, yj, tn) ≈ uni,j will be calculated with the finite
difference scheme (3.24)

un+1
i,j = uni,j +Dµx

[
(uni+1,j−2uni,j+u

n
i−1,j)

2
+

(un+1
i+1,j−2un+1

i,j +un+1
i−1,j)

2

]
+Dµy

[
(uni,j+1−2uni,j+u

n
i,j−1)

2
+

(un+1
i,j+1−2un+1

i,j +un+1
i,j−1)

2

]
−λx

2

(
f̂x,ni+1,ju

n
i+1,j − f̂

x,n
i−1,ju

n
i−1,j

)
− λy

2

(
f̂ y,ni,j+1u

n
i,j+1 − f̂

y,n
i,j−1ui,j−1

)
+λx

2

(
|f̂x,ni+1,j|uni+1,j − 2|f̂x,ni,j |uni,j + |f̂x,ni−1,j|uni−1,j

)
+λy

2

(
|f̂ y,ni,j+1|uni,j+1 − 2|f̂ y,ni,j |uni,j + |f̂ y,ni,j−1|uni,j−1

)
+4t

2
(g(tn+1, xi, yj) + g(tn, xi, yj))

(6.4)
with appropriate mesh grid size 4x,4y > 0 and time step size 4t > 0 that
satisfy the stability conditions (3.25).
We can now define the forward problem as follows:

Definition 6.1.2 (Forward problem). Let the solution of the convection-diffusion
equation (6.1) with initial and boundary conditions (6.2), (6.3) be the forward
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problem. Then with the finite difference scheme (6.4) we define the non-
linear operator F as

F (Θ) = u (6.5)

with model parameter set Θ := (D,v) ∈ Rp, which contains the diffusion co-
efficient D ∈ R>0 and the discretized velocity field
v := (vx,vy), with vx := (vx,0,vx,1, . . . ,vx,n), vy := (vy,0,vy,1, . . . ,vy,n) and

vx,n :=
(
vx,n0,0 , v

x,n
1,0 , . . . , v

x,n
Nx+1,Ny+1

)
, vy,n :=

(
vy,n0,0 , v

y,n
1,0 , . . . , v

y,n
Nx+1,Ny+1

)
and ap-

proximated solution u := (u0, . . . , un) with un =
(
un0,0, . . . , u

n
Nx+1,Ny+1

)
.

Furthermore when we speak of inverse problem, we will now exclusively re-
fer to the inversion of this forward problem as the parameter estimation prob-
lem for parameters Θ ∈ Rp and refer to observation/measurement data used
to obtain those parameters as udata.
We let Θ∗ ∈ Rp be defined as the exact model parameters and Θopt ∈ Rp as
the optimal parameter values obtained numerically.

There are several ways to mathematically define the inverse problem for the
forward problem (6.5). The simplest is to use numerical methods for solving
non-linear equation systems such as Newton’s method or non-linear conju-
gated gradient method as described in Chapter 4 to solve F (Θ) = udata for Θ.
However, this approach would not lead to any satisfying results because nei-
ther the existence nor the uniqueness of the solution Θ is guaranteed, nor are
the observation data udata the exact solution of F (Θ) for a specific Θ which
also does not necessarily depend continuously on such observation data.
For this reason instead of treating the inverse problem as a non-linear equa-
tion system, it is much better to reformulate (6.5) as a minimization problem
that creates a connection between the forward problem F (Θ) and observa-
tion data udata.

Definition 6.1.3 (Inverse Problem). Let the forward problem be defined as
in Definition 6.1.2. Then we define the inverse problem as the minimization
problem

Θopt = arg min
Θ∈Rp

K (Θ) (6.6)

with non-linear least square functional

K(Θ) :=‖ F (Θ)− udata ‖2 (6.7)

with a norm ‖ · ‖ and observation data udata.
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Remark 6.1.4 (Observation data). In this work we consider the observation
data udata to be of the form udata := (u0

data, u
1
data, . . . , u

m
data) with

umdata :=
(
umdatak,l

)
k=0,...,Nx+1,l=0,...,Ny+1

with xk = k4x, yl = l4y for m+ 1 different times, where the observation data
are available on the discretized meshgrid of the whole domain Ω.
The forward operator F is defined such that (F (θ))n

∗
i,j = un

∗
i,j coincide with

the value of (udata)
n∗
i,j at the same meshgrid point at time tn∗. This is usually

achievable by interpolating the numerical solution to match the observation
data.

The smaller the value of the objective functional K(Θ) gets for a Θ ∈ Rp , the
smaller the error between model prediction and observation and the more
realistic the model can be considered.
This minimization problem (6.6) can be solved with the methods for non-
linear optimization introduced in the previous Chapter 5 such as line search
methods or non-linear conjugated method.
However solving the inverse problem (6.6) has three difficulties:

• Ill-posedness: The violation of Hadamard’s properties, as mentioned
above.

• Nonlinearity: The nonlinearity of the objective function might result
in the presence of several local minima [8]. Depending on the initial
guess and the non-linear optimization method, convergence can only be
guaranteed towards one of those local minima which is not necessarily
the global minimum.

• Computational costs: Solving a non-linear minimization problem does
involve many nested iterative computations of the forward problem (6.5)
itself for a variety of parameter sets Θ. If the forward problem is com-
plicated, computationally costly and additionally has stability conditions
depending on the parameters, as it is the case for finite difference meth-
ods, then the computational cost can be immense.

The latter two problems can be dealt with the application of multigrid meth-
ods.
Due to the coarser grid, the number of parameters are reduced and also com-
putations on the coarser grid are more efficient [20].
The first problem can be dealt with by imposing additional information on
the unknown parameter values Θ ∈ Rp and modify the objective function
(6.7) such that the inverse problem is less sensitive to any perturbations.
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6.2 Parameter Estimation Methods For Convection-

Diffusion Problems

With the techniques described in the previous sections, we are now able to
develop the methods used for the parameter estimation problems.
Two different approaches have been investigated by Tao Liu [91, 130] and
Nielsen et al [110] and deal with the problem of parameter estimation for the
convection dominated non-linear convection-diffusion equation in the multi-
phase porous media.
The equation the mentioned papers address is

∂tu(x, y, t) + ∂xφ(u) + ∂yψ(u)−∇ · ((q(x, y)N(u)∇u(x, y, t)) = s(x, y, t),

(6.8)
for Ω× (0, T ) and initial-boundary value conditions

u (x, y, 0) = φ(x, y), for Ω,

u (x, y, t) = 0, for δΩ× (0, T ),
(6.9)

where u is the concentration field, q the constant in time permeability co-
efficient, N a positive non-linear function, s the piecewise smooth source
function and φ, ψ non-linear S-shaped flux function of Buckley-Leverett type.
The goal of such works is to recover the unknown permeability coefficient q
which is a function that varies in space (x, y) and is constant in time t, but the
two methods differ in how the inverse problem is defined.

In Sections 6.2.3 and 6.2.4 we will present the work of Liu [91, 130] and
Nielsen [110] and their main ideas. Afterwards we extend and modify their
approaches on the general convection-diffusion equation

∂tu(x, y, t) = D4u(x, y, t)− div (v(x, y, t)u(x, y, t)) (6.10)

with constant diffusion coefficient D ∈ R>0 and velocity field function v ∈
C2(R2 × (0, T )), which can vary not only in space but also in time.
The novelty in this parameter estimation problem consists of two extensions
to the methods presented in [91, 110].

First Extension: Diffusion and Convection parameters

Firstly, we want to identify not only the diffusion coefficient D but also the
velocity field function v in the convection term of the equation (6.10), which
was fixed and known in their previous work. Despite the fact that our diffu-
sion coefficient parameter D is a constant scalar, the velocity field function
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v(x, y, t) is of similar complexity as the permeability coefficient q(x, y). We are
trying to identify two parameters sets which control two different dynamics;
the diffusion and the convection. Depending on the observation data udata,
these two parameter sets can be highly correlated, which means that small
changes in one parameter set causes inevitable changes to the other param-
eter set. This causes multiple problems during the process of finding the
correct minima.

Second Extension: time dependence of unknown parameter

Secondly, and the most challenging extension, is that the velocity field func-
tion v(x, y, t) not only varies in space (x, y), but also in time t. Problems as
such have not been investigated before for these kind of parameter estima-
tion problems and this is an original contribution of this thesis, which we
investigate through numerical tests in Subsection 6.2.5.

Additionally we will also introduce another parameter estimation method,
presented in the paper of Ferguson et al. [49]. There, a parameter estima-
tion problem for an one-dimensional non-linear convection diffusion-reaction
model for the collective movement of two cell types is being solved which is
very similar to our laboratory model (3.1) .
In their work, they intend to estimate up to 20 unknown model parameters,
each involved in different terms such as diffusion, chemotaxis, crowding ef-
fects and other cell migration characteristics.
These parameters are constant in space, but vary in time, which is in contrast
with [91, 110] where the parameters are constant in time but vary in space.
Another difference is the availability of observation data for the parameter es-
timation problem. Although the mathematical model used in [49] is a macro-
scopic one, which would need macroscopic density as observation data, the
observation data are available in form of cell trajectories. In order to use
the microscopic data for the macroscopic model in [49] without introduc-
ing further errors due to transformations, the so called Maximum-Likelihood
method (see [106]) is used.
The aim in [49] is not in particular the recovery of the unknown parameters,
but the model inference and drawing conclusions about the drivers of the cell
movements by comparing each of their possible models and using model se-
lection criteria such as the Akaike information criterion (AIC) [145] and the
WAIC (widely applicable information criterion) [2, 146].
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6.2.1 Regularization

The most severe issue with inverse problem is that the data do not depend
continuously on the solution and arbitrary small perturbations can lead to
arbitrary large perturbations in the solution.
The condition number as defined in [17] is a measurement of how sensitive
a function is to changes in the input and how much the resulting output
changes from the input.

Definition 6.2.1 (Condition number). The relative condition number of a
function f : Rn → Rm at point x ∈ Rn is the smallest number condrel (f) > 0

such that:

‖ f (x)− f (x̃) ‖
‖ f (x) ‖

≤ condrel (f) (x) · ‖ x− x̃ ‖
‖ x ‖

, x→ x̃. (6.11)

If the function f is continuously differentiable, then

condrel (f) (x) =
‖ f ′ (x) ‖‖ x ‖
‖ f (x) ‖

, (6.12)

where f ′(x) is the Jacobi matrix of f .

Inverse problem are usually suffering from very large condition numbers [48]
and hence they are very ill-conditioned problems. For our parameter estima-
tion problem (6.6) small errors between the solution of the forward problem
and the observation data

‖ F (Θ)− udata ‖< δ (6.13)

lead to arbitrary large error between the estimated parameter solution and
the exact solution ‖ Θ − Θexact ‖. Errors in form of noise are already present
because the forward problem as defined in definition 6.1.2 is not solved ex-
actly but through a discretization method which introduces an error as dis-
cretization noise. In order to stabilize the approximation of the solution, so
called regularization methods have to be used

Definition 6.2.2 (Tikhonov regularization). [151] For the inverse problem
(6.6) with non-linear least square functional

K0 (Θ) =‖ F (Θ)− udata ‖2
2 (6.14)

we define the Tikhonov regularization term as

R (Θ) = λ ‖ T (Θ−Θ0) ‖2
2 (6.15)
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and extend the objective function K0 with (6.15)

K (Θ) =‖ F (Θ)− udata ‖2
2 + λ ‖ T (Θ−Θ0) ‖2

2︸ ︷︷ ︸
general Tikhonov regularization

(6.16)

with Tikhonov matrix T ∈ Rp×p, regularization parameter λ > 0 and a-priori
estimate Θ0 ∈ Rp, which represents a-priori knowledge about the solution.

There is a variety of Tikhonov matrices T to choose from, each with their
own specific advantages and disadvantages which are discussed further in
[48, 95].
Choosing the identity matrix for the Tikhonov matrix T = I ∈ Rp×p gives a
preference to parameter solutions Θ with smaller norms, i.e smaller values.
However also first and second order difference operators, T1 and respectively
T2, in form of derivative matrices can be used to favour smooth parameter so-
lutions:

T1 =


−1 0 1 0 · · · 0

0
. . . . . . . . .

...
...

...
...

...
0 · · · 0 −1 0 1

 ∈ R(p−2)×p

and

T2 =


1 −2 1 0 · · · 0

0
. . . . . . . . .

...
...

...
...

...
0 · · · 0 1 −2 1

 ∈ R(p−2)×p.

(6.17)

The choice of the Tikhonov matrix T depends on the noise and the character-
istic of the parameters Θ and in most cases must be chosen experimentally.
In [122] different Tikhonov matrices have been applied to an inverse problem
with the results being not significantly different.
The regularization term not only imposes a priori information about the pa-
rameters, such as the value Θ0 or characteristics such as smoothness or con-
tinuity, but also imposes numerical stability.
The strength of regularization is controlled by the regularization parameter
λ > 0. If the regularization is too strong, the dampening effect on the param-
eter solution Θ will be large, hence the data-fitting term will be large as well.
If the regularization is too small, then the solution will be a good fit but the
solution may be dominated by features introduced through noise.
If the observation data udata contain noise, then the observation data fit the
model such that for the error ‖ F (Θ)−udata ‖2≤ δ . But there may be many lo-
cal minima as parameter solutions Θopt ∈ Rp. For this reason with the help of
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the regularization term, only solutions will be considered that minimize the
regularization term as well and ensure that certain properties such as small
values or smoothness will be included. We illustrate the different Tikhonov
regularizations in the following example.

Example 2. We consider the one-dimensional convection-diffusion equation
(6.1) with fixed diffusion coefficient D = 0.1 and two different velocity field v
which we want to estimate:

(a)
v := cos(2πx), for 0 ≤ x ≤ 1, (6.18)

(b)

v :=

 −1, for 0 ≤ x < 0.5,

1.5, for 0.5 ≤ x ≤ 1.
(6.19)

The observation data udata for different times t have been obtained by solving
the equation by finite difference scheme on a fine grid and added with 2%

Gaussian noise.
The parameter estimation for parameter v can be seen in Figure 6.1 for three
different Tikhonov matrices T :

• Identity matrix T = I.

• First order difference operator (6.17) T = T1.

• Second order difference operator (6.17) T = T2.

The regularization parameter λ has been obtained experimentally by choos-
ing a λ such that for the parameter estimate ṽ we have

λopt = arg min
λ

(
‖ v − ṽ ‖
‖ v ‖

)
. (6.20)

Results: We can conclude the following: Due to the 2% Gaussian noise,
which have been added to the observation data, the solution of the non-
regularized parameter estimation ṽ contains spurious oscillations, whereas
all solutions of the regularized parameter estimation with Tikhonov matrices
T = I, T1, T2 have dampen most of these oscillations well, which result in a
smoother parameter estimate ṽ. However, there are only small differences
between the three different Tikhonov matrices that have been used on the
regularized objective functional K (Θ). For T = I identity matrix, oscilla-
tions are more strongly present compared to T = T1 and T = T2, where the
regularized solutions ṽ are much smoother and barely contain oscillations.
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Although the regularized solutions ṽ with T = T1 and T = T2 for velocity field
v in b) (6.19) are almost identical and contain small oscillations, especially
around the discontinuity x = 0.5, for the smoother velocity field v in a) (6.18)
the regularized solution ṽ with T2 shows much lower oscillations compared
to T = T1.

Figure 6.1: Parameter estimate of velocity function v for a) (6.18) left, and b) (6.19) right.
The black curve shows the exact solution, the red curve the non-regularized parameter esti-
mate and the blue curve the regularized one. In all examples does the regularized solution
dampens oscillations and are in general a better fit compared to the non-regularized solution.

Usually the exact solution is not available which makes it impossible to find
the optimal regularization parameter. Also the value of the optimal regular-
ization parameter λopt > 0 depends on the forward problem and the noise and
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is usually unknown. Often in practical problems the regularization parame-
ter is determined experimentally through trial and error but there exist many
sophisticated approaches to find the optimal regularization parameter such
as discrepancy principle, cross-validation and the L-curve method, which we
present in the next section [10, 12, 68].

L-curve Criterion

We will briefly introduce the idea behind choosing the regularization param-
eter based on the L-curve criterion described in [68].
The L-curve is a log-log plot for all valid regularization parameters λ > 0 of
the norm of a regularized parameter solution Θ versus the norm of the corre-
sponding residual norm, which is the value of the non-regularized objective
functional K0 (Θ) (6.7).
It is a convenient graphical tool for displaying the trade-off between the size
of a regularized solution and its fit to the given data, as the regularization
parameter varies.
Heuristically, choosing a λLcurve > 0 such that it seeks to balance the two
quantities ‖ Θ ‖ and K(Θ) often leads to a sufficient estimate of the optimal
regularization parameter λopt for the minimization problem (6.6) which gives
the best approximation of Θopt.
As can be seen in Figure 6.2, by increasing the value of λ, only the norm of
‖ Θ ‖2 decreases until a certain point. Then the change of the value of ‖ Θ ‖2

2

flattens whereas the value of the residual ‖ F (θ)− udata ‖2
2 increases.

The estimated optimal λopt can be usually found at the corner of the curve,
or mathematically, the estimated optimal λopt is usually located at the highest
curvature of the L-curve, before for larger regularization parameter λ, the
trade-off between the size of the regularized solution and its goodness of fit
for the given observation data begins to shift towards a worsening of fit with-
out a significant decrease of the size of the regularized solution.
Although the L-curve criterion can give sufficient estimates of the optimal
regularization parameter λopt, there are two limitations:

1. If the exact parameter solution is very smooth, then the L-curve crite-
rion will fail because the optimal regularization parameter is located not
at the point of the highest curvature of the L-curve. This was pointed
out in Hanke [67].

2. For an increasing problem size p, which in the context of our parame-
ter estimation problem means on a finer mesh grid, the λLcurve obtained
from the L-curve criterion does not behave consistently with the opti-
mal regularization parameter λopt, and tends to oversmooth the solution.
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This was worked out in Vogel [142], where a more detailed explanation
can be found.

Although both limitations do apply to our inverse problem of the parameter
estimation (6.6) where part of the unknown model parameters is the velocity
field v which in most application is a smooth function, the L-curve criterion
benefits from the discretization on a coarser grid level making it possible to
find a sufficient regularization parameter through the L-curve criterion. We
will demonstrate with the following example.

Example 3. We consider the inverse problem (6.6) with the regularized ob-
jective functional K(Θ) (6.16) for the one-dimensional convection-diffusion
equation (6.1) and choose as diffusion coefficient D = 1 and for the velocity
field v(x) = cos (2πx) with initial condition u0(x) = 10e−(x−0.5)2

. The numerical
solution is calculated with the finite difference scheme (3.22) with homoge-
neous Neumann boundary conditions on the interval Ω := [0, 1], respecting
the stability condition (3.23).
We fix4x = 0.05 and choose the discretized velocity field as unknown param-
eter for the parameter estimation with Θ = v = (v0, v1, . . . , vNx+1)T .
In Figure 6.2 the L-Curve is plotted with its respective optimal regularization
parameter λopt and the regularization parameter λLcurve through the L-Curve
criteria at the L-curves largest curvature. The value of λLcurve = 0.003 is very
close to the optimal value λopt = 0.0048. The optimal λopt has been obtained

experimentally by calculating the smallest relative error errrel = ‖Θ−Θ̃‖
‖Θ‖ .

Results: As we solve the regularized minimization problem on the fine and
coarse grid, it can be clearly seen from the L-Curves in Figure 6.2 that the
regularization parameter λLcurve estimated through the L-curve criterion is
close to the optimal regularization parameter λopt despite the fact that v is in
fact a smooth function.
This leads to the conclusion that the first limitation of the L-Curve criterion
can be overcome by using a coarser discretization of the velocity field v such
that the estimated regularization parameter λLcurve ≈ λopt gives a sufficiently
good estimate. This is important because generally the exact solution Θ∗ is
not known, hence minimizing the relative error to find the optimal λopt is not
possible.

6.2.2 L¹-L²-Norm

In the previous sections we have defined the inverse problem for the pa-
rameter estimation of the convection-diffusion equation as the unconstrained
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Figure 6.2: L-curve for example 3 with parameter Θ = v. X-axis shows ‖ K(v) ‖ and Y-axis
‖ v ‖ for different regularization parameters λ. Optimal regularization parameter λopt and
L-curve regularization parameter λLcurveare indicated in red.

minimization problem and introduced with the Tikhonov regularization the
regularized minimization problem

min
Θ
K(Θ) =‖ F (Θ)− udata ‖2

2 +λ ‖ T (Θ−Θ0) ‖2
2 (6.21)

with forward operator F , observation data udata and regularization term with
Tikhonov matrix T , a-priori estimate Θ0 and regularization parameter λ.
This leads to the intuitive idea of choosing the L1-norm for the regularization
term instead of the L2-norm.
In context of least square problems, this problem is also known as LASSO in
statistics [152].
To investigate the differences of both approaches we define the two objective
functions

K1(Θ) := ‖ F (Θ)− udata ‖2
2 +λ1 ‖ Θ ‖1,

K2(Θ) := ‖ F (Θ)− udata ‖2
2 +λ2 ‖ Θ ‖2

2 .
(6.22)

The same theory applies as described for the Tikhonov regularization for the
regularization parameters λ1, λ2 > 0, where a large λ increases the damping
effect and can cause over-smoothing of the solution, and a small λ could fit
the solution better but might be dominated by noise.
The essential difference between these two regularization terms is that the
L1-regularization penalizes the sum of the absolute values of Θ. This encour-
ages the elements (Θ)i of Θ to shrink to zero faster and can set them to zero,
whereas the L2-regularization penalizes the sum of the squared values of Θ

190



Parameter Estimation Methods For Convection-Diffusion Problems

and does not have this ability but shrinks all parameters more evenly as seen
in [85].
For the parameter estimation this can be beneficial if redundant parameters
are present in the model, which then can be completely excluded and thus
making the model more interpretable.
It was also shown in [85] that L1-regularization performs significantly better
than the L2-norm when the observation data contain noise.
At the same time this can also be unfavourable for not redundant highly cor-
related parameters since the L1-regularization simply picks one parameter
from a group of correlated parameters and ignores the remaining ones which
increase the overall instability in the parameter estimation and also leading
to multiple solutions.
Another disadvantage is that the L1-regularization results in a non-smooth
objective functional which needs special treatment for the minimization pro-
cess.
Zou and Hastie [152] introduced the elastic net regularization which com-
bines the L1- and L2-norm in the objective function.

K3(Θ) :=‖ F (Θ)− udata ‖2
2 +λ1 ‖ Θ ‖1 +λ2 ‖ Θ ‖2

2 . (6.23)

Their results presented in their paper [152] is that the elastic net regular-
ization provides the benefits of the L1-norm where noise is handled better
and parameters tend to zero but also benefits from the L2-norm by allowing
grouping effect, i.e it shrinks highly correlated parameters simultaneously
instead of choosing one and setting the others to zero.
We will try to verify the different results in the following example.

Example 4. We consider the inverse problem (6.6) with the following three
objective functional K(Θ):

1. K1(Θ) :=‖ F (Θ)− udata ‖2
2 +λ1 ‖ Θ ‖1,

2. K2(Θ) :=‖ F (Θ)− udata ‖2
2 +λ1 ‖ Θ ‖2

2,

3. K3(Θ) :=‖ F (Θ)− udata ‖2
2 +λ1 ‖ Θ ‖1 +λ2 ‖ Θ ‖2

2,

for parameter Θ = v with initial condition u0(x) = 10e−(x−0.5)2
and no-flux

Neumann boundary conditions ∂u
∂n
|δΩ = 0 for the domain Ω := [0, 10].

For the diffusion coefficient we choose D = 1 and the constant in time veloc-
ity field v(x) = 10 sin(x).
For the choice of optimal regularization parameters for λ1 > 0 and λ2 > 0 we
used the L-curve criterion whereas for the regularization parameters λ1, λ2 of
the elastic net (6.23), the regularization parameters have been determined
experimentally. We remark that a generalized L-curve criterion can be ap-
plied for more than one regularization parameter in which the L-curve is a
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multidimensional L-surface [68].
On purpose no observation data have been used for the interval [0, 2] in order
to test the performance of each regularization technique in absence of data.
In Figure 6.3 the discretized velocity field for the L1, L2 and elastic net regu-
larization is plotted.

Results: As expected the L1-regularization sets the velocity field parameters
in the interval with no observation data close to zero whereas the parameters
in the L2-norm regularization are distributed randomly around the x-axis.
However, the L2-norm has more accurate velocity field parameters in areas
where observation data were available compared to the L1-norm.
The elastic net regularization on the other hand stands between both L1 and
L2 norms such that where no observation data were available, the velocity
field parameters are closer to zero than for the L2-norm and for the remaining
area where observation data were available, the parameters lie between the
results of the L1- and L2-norm.
As for the relative error err = ‖vexact−v‖2

‖vexact‖ the smallest error with 6, 8% has the

L1-norm regularization, with 8% for the elastic net regularization and 10, 5%

for the L2-norm regularization.
Although this can be explained with the fact that the velocity field parameters
of the L2-norm regularization in the interval with no observational data are
much larger compared to the other two regularization techniques.

Figure 6.3: Different parameter estimation of example 4.
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6.2.3 Multigrid Parameter Estimation

In Liu [91, 130] the forward problem (6.8) is solved with a finite difference
scheme and the inverse problem defined as a non-linear minimization prob-
lem with a Tikhonov-regularized non-linear least square functional.
The complete numerical method to solve the inverse problem is a combi-
nation of solving the forward problem for different parameter sets in each
nested iteration of a regularized Gauß-Newton method as the optimization
method. This methodology is applied on non-linear multigrid method.
There are multiple benefits of applying a non-linear multigrid approach that
was pointed out in [91], which highly motivate the multigrid application on
inverse problems:

• Reduction of computational cost: Solving the inverse problem in-
volves solving the forward problem numerically with a finite difference
scheme. On a very fine mesh grid this means high computational cost.
Furthermore, finite difference schemes’ stability conditions depend in
general on the model parameters as well which can be a challenge dur-
ing the optimization iteration when different model parameter sets are
being used and might require very small time step sizes 4t. Computa-
tions on coarse grids however not only reduce the computational cost
of the finite difference scheme but also allows in general much larger
time step sizes 4t.

• Reduction of local minima: Computations on coarse grids lead auto-
matically to a reduced number of parameters which not only decreases
the number of local minima tremendously but also put those remaining
local minima further apart from each other. This reduces the risk of
getting trapped in an undesired minimum when the initial guess for the
optimization method is not close enough to the optimal parameter set
[91].

The first point, the reduction of computational cost due to a coarser mesh
grid 4x,4y > 0 is trivial. To demonstrate the effect of the reduction of local
minima, we investigate the following example.

Example 5. We consider the one-dimensional convection-diffusion equation
(6.10) as the forward problem, which is solved with the finite difference
scheme (3.22) with stability conditions (3.23) on the interval Ω = [0, 1], with
initial condition u0(x) = 10e−(x−0.5)2

, diffusion coefficient D = 0.5 and constant
velocity field v = c = 5.
We solve the inverse problem (6.6) with non-regularized objective functional

K0 (Θ) =‖ F (Θ)− udata ‖2
2, (6.24)
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for Θ = (D, c)T ∈ R2 for two mesh grid sizes

a) Fine mesh grid with 4x = 0.01.

b) Coarse mesh grid with 4x = 0.1.

The results are represented in Figure 6.4 where the values of K(θ) = K(D, c)

are shown in a two-dimensional color surface for (D, c) ∈ [0, 2] × [−2, 16] and
local minima labeled for a) and b).

Results: Figure 6.4 shows clearly that firstly the number of local minima on
the coarse grid is extremely reduced compared to the finer grid. Secondly,
the numerical test indicates that the descent direction of the gradient of the
objective functional ∇K leads towards the global minima for the coarse grid,
which allows the initial guess Θ0 for the optimization to be much further
away from the exact solution Θ∗ = (0.5, 5)T whereas for the fine grid, this is
not the case. These results support the motivation to apply non-linear multi
grid methods for parameter estimation problems.

We present the methodology for the parameter estimation which is intro-
duced in [91] for the permeability (diffusion) coefficient q(x, y) in (6.8) in a
more generalized form for our convection-diffusion equation (6.10) where the
velocity field v(x, y) is the parameter that needs to be determined for fixed
and known diffusion coefficient D ∈ R and refer to [91, 130] for (6.8).

Forward problem

As the forward problem we consider the two-dimensional convection-diffusion
problem

∂tu (x, y, t) = D4u (x, y, t)− div (v (x, y)u (x, y, t)) ,

u (x, y, 0) = u0 (x, y) ,

∂u
∂n

∣∣
∂Ω

= 0

(6.25)

with diffusion coefficient D ∈ R>0 and velocity field v (x, y) ∈ C2 (R2).
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(a) Objective functional K on finer mesh grid 4x = 0.01

(b) Objective functional K on coarser mesh grid 4x = 0.1

Figure 6.4: Both plots show the value of the objective functional K for the one-dimensional
convection diffusion equation with D and constant c. K has on the finer grids many local
minima. On the coarser grid most of the local minima disappear leaving only the global
minima D = 0.5 and c = 5 and another local minima. Additionally the region around the
global minima on the coarser grid assumes a better convergence and bigger basin than on
the finer grid.

Discretization

First, the partial differential equation (6.25) for the two-dimensional domain
Ω is discretized with the explicit finite difference scheme (3.24)

un+1
i,j = uni,j +Dµx

[
(uni+1,j−2uni,j+u

n
i−1,j)

2
+

(un+1
i+1,j−2un+1

i,j +un+1
i−1,j)

2

]
+Dµy

[
(uni,j+1−2uni,j+u

n
i,j−1)

2
+

(un+1
i,j+1−2un+1

i,j +un+1
i,j−1)

2

]
−λx

2

(
vx,ni+1,ju

n
i+1,j − v

x,n
i−1,ju

n
i−1,j

)
− λy

2

(
vy,ni,j+1u

n
i,j+1 − v

y,n
i,j−1ui,j−1

)
+λx

2

(
|vx,ni+1,j|uni+1,j − 2|vx,ni,j |uni,j + |vx,ni−1,j|uni−1,j

)
+λy

2

(
|vy,ni,j+1|uni,j+1 − 2|vy,ni,j |uni,j + |vy,ni,j−1|uni,j−1

)
(6.26)
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with boundary conditions (3.29) and stability conditions (3.25). Because we
solve the forward problem on different grid levels, we need a proper defini-
tion

Definition 6.2.3 (Grid Levels). Let (6.26) be the numerical solution for the
forward problem (6.25). Then we define the grid level (g) as the discretization
of the domain Ω as Ω(g) with mesh grid size 4x(g) = 2g4x and 4y(g) = 2g4y
with grid level g = 0, . . . , G, where grid level (0) corresponds to the finest
grid with 4x(0) = 4x and 4y(0) = 4y and grid level (G) corresponds to the
coarsest possible grid with 4x(G) = 2G4x, 4y(G) = 2G4y.
The corresponding discretized velocity field v is thus defined as

v
(g)
i,j =

(
v
x,(g)
i,j

v
y,(g)
i,j

)
(6.27)

with indices i = 0, . . . , N
(g)
x + 1 and j = 0, . . . , N

(g)
y + 1 according to the dis-

cretized domain Ω(g) for grid level g.

The same applies to the discretized solution u
(
x

(g)
i , y

(g)
j , tn

)
≈ u

n,(g)
i,j with

un,(g) :=
(
u
n,(g)
0,0 , . . . , u

n,(g)
Nx+1,Ny+1

)
. (6.28)

The superscript (g) at indices such as i, j is omitted whenever a variable is
denoted with the superscript (g) and only reintroduced when required.
The solution of the forward problem with non-linear forward operator F is
consequently defined as

F (g)
(
v(g)
)

= u(g). (6.29)

Inverse Problem

Next, we derive the inverse problem as the minimization problem for the
parameter estimation.
Here we will consider the velocity field v as the unknown parameter with
Θ = v whereas the diffusion coefficient D > 0 will be assumed known.
We define the objective functional K as a Tikhonov-regularized non-linear
least square functional

K(g)
(
v(g)
)

:=‖ F (g)
(
v(g)
)
− u(g)

data ‖
2
2 +λ(g) ‖ v(g) ‖2

2 (6.30)

with regularization parameter λ(g) ∈ R>0 for Tikhonov matrix T = I and ob-
servation data u(g)

data at grid level (g).

Remark 6.2.4. We assume that the observation data udata are defined over
the whole domain Ω on the finest grid level g = 0. Values for coarser grid
levels g are obtained by neglecting the in-between values.
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The inverse problem on the fixed grid level (g) is then defined as the non-
linear minimization problem

v(g) = arg min
v(g)

K(g)
(
v(g)
)
, (6.31)

which then can be solved with the non-linear optimization methods presented
in Chapter 5.
As it is, the inverse problem (6.31) can be used for the parameter estimation
of v but does not benefit from the application of the non-linear multigrid ap-
proach which we discussed in Section 4.2.2. In the following we introduce the
necessary multigrid components to apply the non-linear multigrid approach
to the inverse problem.

Multigrid components

For the application we have already defined the grid refinement with Ω(g) for
grid levels g = 0, . . . , G in Definition 6.2.3.
For the non-linear multigrid method also appropriate restriction and prolon-
gation operators are necessary to switch between grid levels appropriately:

• Forward problem: For the forward operator F (g) the switch to different
grid levels g can be realized trivially by changing the mesh grid size
4x(g) and 4y(g) for the finite difference scheme (6.26) and does not
require any special treatment.

• Discretized velocity field: For the discretized velocity field v(g) which is
defined at the nodes of the mesh grid (x

(g)
i , y

(g)
j ) it is necessary to define

an appropriate restriction operator Ig+1
g : Ω(g) → Ω(g+1) and prolongation

operator Igg+1 : Ω(g+1) → Ω(g).

In the following definitions we will use the stencil notation which illustrates
matrix structures as discretization stencils. This notation allows us to repre-
sent the discretized operators in a more natural way where each element in
the stencil form is placed according to its geometrical position. We refer to
[138].

In the following we refer with i(g) and j(g) to the indices according mesh grid
Ω(g) and omit superscript (g) when it becomes clear from the context.

Restriction operator

Typical choices for a restriction operator Ig+1
g : Ω(g) → Ω(g+1) is the simple in-

jection operator which only considers values that coincide at both grid levels
g and g + 1.
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Definition 6.2.5 (Injection operator). The injection operator Ig+1
g : Ω(g) →

Ω(g+1) for v(g) is defined in stencil form as

Ig+1
g :=

]
1
[

(6.32)

such that (
Ig+1
g v(g)

)
i(g+1),j(g+1) = vi(g),j(g) (6.33)

However this loss of information results in worse approximation, thus using
a weighted restriction operator that takes into account the adjacent points to
form a mean value is more beneficial.

Definition 6.2.6 (Weighted restriction operator). The weighted restriction
operator Ig+1

g : Ω(g) → Ω(g+1) for v(g) is defined in stencil form as

Ig+1
g :=

 1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 (6.34)

such that

(Ig+1
g v(g))i(g+1),j(g+1) = 1

16
( vi(g)−1,j(g)−1 + 2vi(g),j(g)−1 + vi(g)+1,j(g)−1

+2vi(g)−1,j(g) + 4vi(g),j(g) + 2vi(g)+1,j(g)

+vi(g)−1,j(g)+1 + 2vi(g),j(g)+1 + vi(g)+1,j(g)+1

)
.

(6.35)

The weighted restriction therefore carries more "information" from the finer
grid to the coarser grid.

Prolongation operator

Similar to the weighted restriction operator (6.34) we define a prolongation
operator Igg+1 : Ω(g+1) → Ω(g) that is able to carry more information to the finer
grid

Definition 6.2.7 (Linear interpolation prolongation operator). The two-dimensional
linear interpolated prolongation operator Igg+1 : Ω(g+1) → Ω(g) in stencil form
is defined as

Igg+1 :=

 1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4

 . (6.36)
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Smoothing

The last component for the non-linear multigrid method is an appropriate
relaxation i.e smoothing operator

S(g)
(
v(g), K(g)

)
(6.37)

with an appropriate initial guess v(g) which can be any non-linear optimiza-
tion method such as regularized Gauß-Newton, non-linear conjugated gradi-
ent method or other line search methods.

Two-grid Approach

A non-linear multigrid method for two levels as in Section 4.2.2 Algorithm 4.0,
consists of the following steps to perform a correction of v(g) to the corrected
v̂(g):

• Initialization: Let v(g) be the initial discretized velocity field for grid
level (g).

• Restriction: v(g+1) = Ig+1
g v(g).

• Smoothing: ṽ(g+1) = S(g+1)
(
v(g+1), K(g+1)

(
v(g+1)

))
.

• Prolongation and Correction: v̂(g) = v(g) + Igg+1

(
ṽ(g+1) − v(g+1)

)
.

Even though the application of the non-linear multigrid method with restric-
tion (6.34), prolongation (6.36) and smoothing operator on the minimization
problem (6.31) have been performed, two aspects must be ensured first: Con-
sistency and convergence.
Consistency cannot be guaranteed without adjusting the objective functional
K(g) (6.30) such that it consistent on every grid level (g).
For this reason we modify the original objective function K(g)(6.31) with an
additional term to ensure consistency:

K̂(g) := ‖ F (g)
(
v(g)
)
− u(g)

data ‖
2
2 +λ(g) ‖ v(g) ‖2

2︸ ︷︷ ︸
=K(g)(v(g))

−r(g)v(g) (6.38)

with row vector r(g) to adjust the gradient of the new objective function K̂(g)

and ensure consistency.
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Condition 1: Consistency

In order to ensure consistency, we need certain requirements such that

K̂(g+1)(v̂(g+1)) = K̂(g)(v̂(g)) + constant (6.39)

and need to adjust u(g+1)
data , λ

(g+1) and r(g+1) accordingly.
The assumption we made are the following:

• For the observation data u(g+1)
data we require that the initial deviation be-

tween the solution of the forward problem and the observation data is
the same at the coarse and fine grids:

F (g+1)(Ig+1
g v(g))− u(g+1)

data = Ig+1
g

(
F (g)(v(g))− u(g)

data

)
⇔ u

(g+1)
data = Ig+1

g u
(g)
data −

[
Ig+1
g F (g)(v(g))− F (g+1)(Ig+1

g v(g))
]
,

(6.40)
where the square bracket term compensates for the forward problem
mismatch between grids.

• For the regularization parameter λ(g+1) we require that

λ(g+1) ‖ Ig+1
g v(g) ‖2

2= λ(g) ‖ v(g) ‖2
2 ⇔ λ(g+1) =

‖ v(g) ‖2
2

‖ Ig+1
g v(g) ‖2

2

λ(g). (6.41)

Conditions (6.40) and (6.41) are especially important in regards to com-
paring the same inverse problem on fixed grids with different sizes.

• In order to find a condition for the vector r(g+1) we require that the gra-
dient of the objective functional must be equal on different grid levels.

∇K̂(g+1)(Ig+1
g v(g)) = ∇K̂(g)(v(g))Igg+1 (6.42)

where the prolongation operator Igg+1 actually plays the role of the re-
striction operator because it multiplies the gradient on the right [112].
The equality (6.42) can be enforced by choosing

r(g+1) = ∇K(g+1)(Ig+1
g v(g))−∇K̂(g)(v(g))Igg+1. (6.43)

On the finest grid g = 0 this means K̂(0) = K(0), thus r(0) = 0.

Fulfilling conditions (6.40), (6.41) and (6.43) guarantees that the objective
functional K̂ on different grid levels is equal within an additive constant
(6.39). This ensures consistency.
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Condition 2: Convergence

For convergence we require that the value of the objective functional K̂(g) for
v̂(g) is decreasing after the coarse grid correction on v(g).

K̂(g)(v̂(g)) ≤ K̂(g)(v(g)). (6.44)

This is a typical condition for line search methods as they appear in non-
linear optimization methods (5.11).
We refer to [20, 112] where sufficient conditions are being derived to guar-
antee convergence for the non-linear multi grid method as an optimization
method.
The two-grid-level method for this parameter estimation problem can be ex-
tended to full V and W-cycles as described in Section 4.1.3 in the exact same
way as for FAS methods (4.2.2), with the only modification of adjusting the
objective functional dynamically accordingly to ensure consistency.

We conclude this section by stating that the results achieved in [91] shows
that the application of multi grid methods does reduce computational time by
more than 50% and at the same time improves the relative error compared to
a fixed grid method.
We also want to remark that the approach of [91] can be modified and im-
proved by choosing different regularization terms and using a Full multigrid
method (FMG) (see Section 4.0), which can improve the initial guess.

6.2.4 Residual Constrained Parameter Estimation

Another approach for the parameter estimation of (6.8) is described in the
paper of Nielsen et al. [110].
As in [91], the inverse problem is defined as a non-linear minimization prob-
lem with Tikhonov-regularized non-linear least square functional without the
application of multi grid methods.
The significant difference between these two approaches consists in how the
forward problem is being solved in [110]. Instead of calculating the solution
of the forward problem (6.8) F (q) = u numerically with a finite difference
scheme as in definition 6.1.2, it is computed by a constrained minimization
problem where the distance between solution u and observation data udata is
being minimized under a constraint. This constraint is the discretized resid-
ual of (6.10). This approach eliminates the need of solving the forward prob-
lem with finite difference schemes entirely, and reduces the computational
cost, but at the same time increases the number of unknown parameters that
need to be estimated in the minimization procedure.
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Definition 6.2.8 (Inverse Problem). Let the solution of the convection-diffusion
equation (6.1) with initial and boundary condition (6.2), (6.3) be the forward
problem. Furthermore, let the discretized residual rni,j be defined with the
finite difference scheme from (6.26) as

rni,j(u) :=
un+1
i,j −u

n
i,j

4t −D µx
4t

[
(uni+1,j−2uni,j+u

n
i−1,j)

2
+

(un+1
i+1,j−2un+1

i,j +un+1
i−1,j)

2

]
−D µy

4t

[
(uni,j+1−2uni,j+u

n
i,j−1)

2
+

(un+1
i,j+1−2un+1

i,j +un+1
i,j−1)

2

]
+ λx

24t

(
vx,ni+1,ju

n
i+1,j − v

x,n
i−1,ju

n
i−1,j

)
+ λy

24t

(
vy,ni,j+1u

n
i,j+1 − v

y,n
i,j−1ui,j−1

)
− λx

24t

(
|vx,ni+1,j|uni+1,j − 2|vx,ni,j |uni,j + |vx,ni−1,j|uni−1,j

)
− λy

24t

(
|vy,ni,j+1|uni,j+1 − 2|vy,ni,j |uni,j + |vy,ni,j−1|uni,j−1

)
.

(6.45)
Then we define the inverse problem of the residual constrained parameter
estimation as

min ‖ u− udata ‖2
2 subject to rni,j(u) = 0. (6.46)

We will now transform the constrained minimization problem (6.46) into an
unconstrained problem by using the augmented Lagrangian method (5.37)
with Lagrangian functional Lc

Lc(v, u, λ) := ‖ u− udata ‖2
2 +λ ‖ Tv ‖2

2 +
∑
i,j

(
λni,jr

n
i,j +

c

2

(
rni,j
)2
)

(6.47)

with Tikhonov matrix T , regularization parameter λ > 0, Lagrangian multi-
plier λni,j ∈ R and penalty constant c > 0.
The minimization problem not only needs to estimate the discretized velocity
field function v = (vx,vy), but also the Lagrangian multiplier λni,j and the dis-
cretized solution of the forward problem u as well.
Comparing the approach of Liu in Section 6.2.3 for a fixed grid size such that
the discretized velocity field is of vxi,j, v

y
i,j and i = 0, . . . , Nx+1, j = 0, . . . , Ny+1

means that instead of 2(Nx + 2)(Ny + 2) unknown parameters, the augmented
Lagrangian method has additionally M(Nx + 2)(Ny + 2) unknown parame-
ters because of the Lagrangian multiplier λni,j for each time steps tn with
n = 0, . . . ,M − 1.
Although a multi grid approach is not used in [110], it reduces the number of
unknown parameters by choosing a coarser representation by prolongation
and interpolating the intermediate values of v. The algorithm of solving the
minimization problem (6.47) is:

1. Set initial values for all (u)(0), λ
(0),n
i,j ∈ R and v(0)

2. Solve the first minimization problem for v

v(k+1) = arg min
v
L(v, u(k), λ(k)). (6.48)
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3. Solve the second minimization problem for u

u(k+1) = arg min
u
L(v(k+1), u, λ(k)). (6.49)

4. Update Lagrangian multiplier

λ(k+1) = λ(k) + cr(u(k+1),v(k+1)). (6.50)

5. Repeat minimizations with k + 1.

Each minimization problem is solved with a non-linear optimization method.
Nevertheless we want to note that both works [91, 110] are solving the same
problem with similar data and obtain a similar quality of approximation. How-
ever, it is mentioned in Nielsen [110] that for convection dominant problems
the algorithm encounters difficulties.

6.2.5 Time-varying Parameters

In both the multigrid- and residual constraint parameter estimation meth-
ods we discuss the parameter estimation of the velocity field function v(x, y)

which is constant in time, and only vary in space. A similar setting is investi-
gated in the original work [91, 110] for the permeability coefficient q(x, y) in
(6.8).
The discretization of v(x, y) with vxi,j,v

y
i,j has been obtained according to the

chosen mesh grid.
However the more general case for time-varying parameters has not been
considered and will be presented in this section as an original contribution
of this thesis.

Let the time-varying velocity field v be defined as

v : Ω2 × (0, T )→ R,

v(x, y, t) :=

(
vx(x, y, t)

vy(x, y, t)

)
.

(6.51)

For a fixed spatial mesh grid (see definition 6.2.3) we obtain the discretized
velocity field vni,j ∈ R2(Nx+2)×(Ny+2), for fixed time tn.
This is the setting we have used for the multigrid parameter estimation method
in Section 6.2.3 and the residual constraint parameter estimation method in
Section 6.2.4, where the velocity field v only depends on space.
However, for time dependent velocity field v(x, y, t), solving the forward prob-
lem requires not only the discretized velocity field vi,j in space but also in
time vni,j.
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Under these circumstances the number of unknown parameters increases by
a factor of M ∈ N where M depends on the number of time step iterations
the forward problem needs to perform.

In the following we will consider the inverse problem as defined in Definition
6.1.3 with

arg min ‖ F (v)− udata ‖2
2, (6.52)

where the non-linear forward operator F is the numerical solution of the
two-dimensional convection-diffusion equation (6.1) with the finite difference
scheme (6.4) for a fixed mesh grid with 4x,4y > 0 and fixed time step size
4t > 0 that respects the stability condition (3.25). Then the discretized ve-
locity field is defined as vni,j =

(
vn,xi,j , v

n,y
i,j

)
with i = 0, . . . , Nx+1, j = 0, . . . , Ny+1

and n = 0, . . . ,M with M = T
4t and tM = T .

We will neglect the superscript x (resp. y) that indicates the x- and y-component
to make the reading easier and we will make distinction only when necessary.

In order to reduce the number of parameters vni,j we only choose a reduced
number of time iterations M∗ < M which motivates the following methods as
an original contribution of this thesis.

Temporal Multigrid Approach

The idea of the temporal multigrid approach (TMA) is based on the splitting
of the time interval T := [0, T ] into disjoint subintervals Tk := [t∗k, t

∗
k+1] for a

time discretization with variable time step 4t∗k with 0 = t0, t1∗ , . . . , tM∗ = T

with M∗ < M .
If we choose a regular splitting with 4t∗ = 2h4t for t∗n = n∗4t∗ and M∗ =
T
4t∗ = M

2h
for an integer h > 0, we obtain

vn
∗

i,j = v2hn
i,j (6.53)

and consequently reducing the number of parameters vni,j by the factor of 1
2h

.
However, also non-equidistant subintervals Tk := [t∗k, t

∗
k+1] can be used with

variable time step size 4t∗k.

Remark 6.2.9. Intuitively, in time intervals [a, b] with larger time derivative
∂v
∂t

, finer subintervals can be used, whereas in intervals with smaller time
derivatives ∂v

∂t
coarser subintervals can be used because not much change is

to be expected and thus not many parameters are needed for an accurate
approximation.
Nevertheless, this is only feasible if a-priori information about the time deriva-
tion ∂v(x,y,t)

∂t
of the velocity field is available.
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Interpolation of intermediate values

Because the finite difference methods of the forward problem require also
intermediate values of vni,j, where tn 6∈ {t0, . . . , t∗n, . . . , t∗M}, we need to interpo-
late them accordingly [29]. We obtain

vni,j = sn (tn) for tn ∈ [t∗k, t
∗
k+1] with t∗k ≤ tn < t∗k+1, (6.54)

where sn is a polynomial function. The simplest choice is a linear interpola-
tion such that

vni,j = vk
∗

i,j +
vk
∗+1
i,j − vk∗i,j
4t∗k

(tn − t∗k) , for t∗k < tn < t∗k+1. (6.55)

We summarize the results in the following proposition.

Proposition 6.2.10. Let the inverse problem of the convection-diffusion-
equation be defined as in definition 6.1.3, for fixed meshgrid 4x,4y > 0

in the time interval T := [0, T ].
Then we define with a variable time step size4txk > 0 the disjoint subintervals

T = [0, T ] = [t∗0, t
∗
1] ∪ · · · ∪ [t∗k, t

∗
k+1] ∪ · · · ∪ [t∗M∗−1, t

∗
M∗ ]. (6.56)

Then the discretized velocity field v is defined as

vni,j =

 vn
∗

i,j , if tn ∈ {t∗0, . . . , t∗M∗},

sk∗ (tn) , if tn 6∈ {t∗0, . . . , t∗M∗} for t∗k ≤ tn < t∗k.
(6.57)

The approach of a coarser temporal representation of the discrete velocity
field v is similar to the multigrid approach and allows us to reduce the effec-
tive parameters in the minimization methods and hence deliver more stable
results as explained in [92] for the general multigrid approach.

We will demonstrate the temporal multigrid approach in the proceeding ex-
amples in Section 6.3.

6.2.6 Function Reconstruction

In the previous sections we applied the multigrid parameter estimation method
to develop a robust algorithm for the parameter estimation of the diffusion
coefficient D and velocity field v, which can vary not only in space but also
in time.
By using non-linear solvers as smoother in each grid level, we are able to
converge towards local minima and with good initial guess obtain sufficient
results for the parameter estimation.
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Hitherto we assumed an arbitrary velocity field function v (x, y, t) for the
convection-diffusion equation.
However sometimes additional knowledge of the velocity field can be used
to further improve the parameter estimation process which depends on the
form of the additional available information.
If the velocity field v is restricted through some constraint function

G(v) = 0, (6.58)

we can use a constrained minimization problem similar to the residual con-
strained parameter estimation method.
Another example is a parabolic reaction-diffusion equation for chemotaxis

∂tφ = Dφ4φ+ αu− βφ (6.59)

for the model equation
∂tu = Du4u− div (vu) , (6.60)

where the velocity field v is defined as the gradient function of the chemoat-
tractant

v = ∇φ (6.61)

and the dynamics of φ determined by the parabolic equation (6.59).
There are three main approaches how the additional information can be in-
cluded into the parameter estimation method:

1. Include φ in the forward and inverse problem, such that

F (Θ) =

(
u

φ

)
, (6.62)

where the model parameters Dφ, α, β ∈ R>0 are also being estimated
with Θ.

2. Post-smoothing step: Include a second inverse problem to improve the
estimate of the velocity field ṽ. The parameter estimation of v obtained
through (6.7) will be used in a second inverse problem

arg min ‖ H (Θv)− v ‖2
2, (6.63)

where the non-linear forward operator H corresponds to the second
parabolic equation of φ with model parameters Θv. In a second step the
forward problem is then being solved with the estimated Θv to obtain a
new corrected parameter estimate of v.

3. Construct a constraint function

G(v) = 0 (6.64)

and solve the inverse problem as a constrained minimization problem.
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The first approach is very simple to apply to the parameter estimation method,
however it increases not only computational cost but also involves a greater
number of parameters that need to be estimated.
This leads to more local minima and thus worsens the parameter estimation
process.
The second approach however is independent of the parameter estimation
and can be considered as a post-smoothing step, where the already acquired
parameter estimate gets corrected or smoothed.
The last approach defines a constraint function G which then can be used in
constrained minimization methods such as the penalty method (5.34).

Definition 6.2.11. Let the inverse problem of the convection-diffusion equa-
tion be defined as in Definition 6.1.3. Furthermore let G be a constraint
function of the velocity field v with

G(v) = 0, (6.65)

then the modified non-regularized objective functionalK0 of the inverse prob-
lem is defined as

K0 (Θ) :=‖ F (Θ)− udata ‖2
2 +c (G(v))2 (6.66)

with penalty coefficient c > 0.

Definition 6.2.12. Let the inverse problem of the convection-diffusion equa-
tion be defined as in Definition 6.1.3, φ be the solution of the parabolic
reaction-diffusion equation (6.59) and the velocity field v defined as the gra-
dient function of φ. Furthermore let v be the parameter estimate solution of
the inverse problem of the convection-diffusion equation. Then we define the
postsmoothing step with corrected velocity field ṽ

ṽ = arg min ‖ H (Θv)− v ‖2
2 (6.67)

as the second inverse problem for the reaction-diffusion equation (6.59) with
model parameters Θv, where H the function composition of a non-linear for-
ward operator of the reaction-diffusion equation and a difference operator.

Example 6. We demonstrate the post-smoothing effect on the one-dimensional
convection diffusion equation, where the unknown velocity field v is esti-
mated by solving the parameter estimation problem with objective functional

K0 (Θ) :=‖ F (Θ)− udata ‖2
2 (6.68)

with Θ = v and
K0 (Θ) :=‖ F (Θ)− udata ‖2

2 +c (G(v))2 (6.69)
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(a) Velocity field v without post-smoothing step (b) Velocity field v with post-smoothing step

Figure 6.5: A comparison between the velocity field before and after the post-smoothing
step. Left (orange): The oscillations which are very dominant at the borders and in areas
with high second derivative. Right (blue): The post-smoothing has reduced some oscillations
present at the borders.

with penalty parameter c = 10−4 and constraint function

G (v) := sin (xi)− vi. (6.70)

The effect the penalty constraint has on the parameter estimate solution ṽ

can be seen in Figure 6.5.

Results: The overall solution is improved by reduced oscillations, however
the relative error errrel = ‖v−ṽ‖2

‖v‖2 in the middle segment [3, 7] has not improved
with errrel = 0.129 without the postsmoothing and with errrel = 0.135 with
postmoothing.

6.3 Results on Parameter Estimation Methods

In the following section we will apply the previously presented and modified
multigrid parameter estimation methods and the residual constraint param-
eter estimation method on several test equations to investigate their perfor-
mance and robustness and compare the methods with each other.

6.3.1 Preparation

Before we present the results, we will give an overview of the several test
equations and techniques used for the numerical experiments.

Test equations

In the following we will consider the following numerical tests:
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1) Parameter estimation of the one-dimensional convection-diffusion
equation 

∂tu = D∂xxu− ∂x (vu) ,

u0(x) = 10e−
1
2

(x−0.5)2

,

∂u
∂x
|∂Ω = 0

(6.71)

with diffusion coefficient D = 4 and velocity field:

i) Constant: v:=c=25.

ii) Constant in time t, varying in space x: v := c(x) = 15 sin(2πx)

iii) Varying in time t and space x: v := c(x, t) = 15 sin(2πx− 4t).

iv) Varying in time t and space x with constraint: v := ∇φ(x, t)

with 
∂tφ = 0.5∂xxφ,

φ0(x) = 15e−10(x−0.25)2

,

∂φ
∂x

∣∣
∂Ω

= 0.

(6.72)

2) Parameter estimation of the two-dimensional convection-diffusion
equation 

∂tu = D∆u− div (vu) ,

u0(x, y) = 10e−
1
2((x−0.5)2+(y−0.5)2),

∂u
∂n

∣∣
∂Ω

= 0

(6.73)

with diffusion coefficient D = 1 and velocity field:

a) Varying in space (x, y):

v(x, y) :=

 −10 (x− 0.5) e−5(x−0.5)2−5(y−0.5)2

−10 (y − 0.5) e−5(x−0.5)2−5(y−0.5)2

 . (6.74)

Parameter Estimation Methods

We apply the following parameter estimation methods on the test equations
for the model parameters Θ with regularization functional R(Θ):

I) Multigrid Parameter Estimation Method (MGPE) (according to Sec-
tion 6.2.3):

K̂(g)(Θ(g)) :=‖ F (g)
(
Θ(g)

)
− u(g)

data ‖
2
2 +R(Θ(g))− r(g)Θ(g). (6.75)
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II) Residual Constraint Parameter Estimation Method (RCPE) (ac-
cording to Section 6.2.4):

Lc(Θ, u, λ) := ‖ u− udata ‖2
2 +R(Θ) +

∑
i,j

(
λni,jr

n
i,j +

c

2

(
rni,j
)2
)
. (6.76)

III) Maximum-Log-Likelihood Method (MLL) (see [49])

logL :=

np∑
i=1

log (P (xid , yjd |Θ)) +R(Θ) (6.77)

with

P (xid , yid |Θ) =
F
nd
id,jd

(Θ)

Ind
, (6.78)

where F nd
id,jd

(Θ) is defined as the solution of the forward problem
F nd
id,jd

(Θ) = undid,jd at data point (xid , yjd , tnd) with model parameter Θ and

Ind := 4x4y
∑
i,j

undi,j .

For all three objective functions (6.75)-(6.77), we investigate the effects of
the non-linear multigrid approach, which we derived and analysed in Sec-
tion 6.2.3 for general objective non-linear functions, in regards to region of
convergence, initial guess sensitivity, computational cost and robustness to-
wards noise.

Regularization Term

For the regularization functional R(Θ) in (6.75) and (6.76) we have

R(Θ) = bDRD(D) + bvRv(v) + bvt

N+1∑
i=0

Rvt(vi) + bvx

M∑
n=0

Rvx(v
n) (6.79)

with regularization parameters bD, bvx , bvt ∈ R>0 and

RD(D) := |D|,

Rvx(v
n) := µ ‖ Txvn ‖1 +(µ− 1) ‖ Txvn ‖2

2,

Rvt(vi) := µ ‖ Ttvi ‖1 +(µ− 1) ‖ Ttvi ‖2
2,

Rv(v) := µ ‖ v ‖1 +(µ− 1) ‖ v ‖2
2

(6.80)

with appropriate Tikhonov matrices Tx ∈ RN+1×N+1 and Tt ∈ RM×M and elas-
tic net parameter µ ∈ [0, 1].
In our setting we will use second order difference operator for the spatial dis-
cretization of the velocity field vn ∈ RN and the first order difference operator
for the time discretization of the velocity field vi ∈ RM . The regularization
parameters are being obtained experimentally through MATLAB© and the
L-Curve criterion.
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Convergence Criterion

The convergence criterion is reached when

‖ Θk+1 −Θk ‖≤ 10−3 (6.81)

and we define the relative error as

errD :=
‖ Dexact −Dopt ‖
‖ Dexact ‖

,

errv :=
‖ vexact − vopt ‖
‖ vexact ‖

.

(6.82)

Artificial Data

For the artificially derived observation data udata we apply a finite difference
scheme with very fine mesh grid size 4x,4y > 0 and time step size 4t to
have reasonable accurate observation data.
In order to replicate the situation of inherent noise, we add a Gaussian noise
to the artificial data with

unoise
data = udata + σudataΥ (6.83)

with Υ ∼ N(0, 1) a normally distributed number with zero mean and standard
deviation 1, whereas σ ∈ [0, 1] controls the noise percentage.
In order to have a reasonable comparison between the multigrid and resid-
ual constraint parameter estimation method with the maximum-likelihood
method, we create microscopic data of sample size 1000 from the artificial
data udata with the acceptance-rejection method in Algorithm 7.3 which we
present later in Chapter 7.1.

6.3.2 One-dimensional case

We begin by discretizing the one-dimensional convection diffusion equation
(6.73) by the previously introduced finite difference scheme (3.22)

un+1
i = uni +Dµx

[
un+1
i+1 −2un+1

i +un+1
i−1

2
+

uni+1−2uni +uni−1

2

]
− λx

2

(
uni+1v

n
i+1 − uni−1v

n
i−1

)
+λx

2

(
|vni+1|uni+1 − 2|vni |uni + |vni−1|uni−1

)
(6.84)

with λx := 4t
4x and µx := 4t

4x2 with 4x,4t > 0.

We also define several discretization grid refinements Ω(g) for the later use of
the multigrid approach and set Ω(0) as the finest grid with 4x0 := 4x = 10−3

and the subsequently coarser grids Ω(g) with 4xg := 2g4x.
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Furthermore we define the residual as

rni : =
un+1
i −uni
4t −D [un+1

i+1 −2un+1
i +un+1

i−1 +uni+1−2uni +uni−1]
4x2 +

uni+1v
n
i+1−uni−1v

n
i−1

24x

− |v
n
i+1|uni+1−2|vni |uni +|vni−1|uni−1

24x .

(6.85)

Regarding the observation data, we choose datasets undatai for times t0 = 0 to
tM := 10, and using equidistant time samples between t = 0 to t = 10.

6.3.3 i) Constant

For the constant case, the discretized velocity field is vni = c ∈ R for all i and
time steps n, which results in just two model parameters.
We choose D = 4 and v = c = 25 in order to have a high Peclet number,
simulating a convection-dominated model as this is the case for chemotaxis
models.
As initial guess for the optimization method we choose randomized values
such that for each initial parameter guess

Θ0 ∈ [Θexact − 2Θexact,Θexact + 2Θexact]. (6.86)

Results i)

The results are being collected in Figure 6.6, 6.7 and 6.8. We can deduce
from results of 6.6 and 6.7 that for a fixed grid level MGPE recovers the pa-
rameters almost exactly with relative errors below 1%, even with 5% Gaussian
noise, whereas RCPE performs in general slightly poorer with a higher rela-
tive error of the diffusion coefficient of 4.3% and even a higher relative error
for the velocity field v with 3.5%, especially under Gaussian noise where the
relative errors of both parameters are higher than 10%. This result reflects
what was mentioned in [110] that the RCPE method performs less accurately
and robustly for convection-dominant problems. The MLL however performs
worse on the recovery of the velocity field v with a relative error of 12.7%.
The application of the non-linear multigrid to MGPE and RCPE improves the
performance and as such they are able to recover both parameters with a suf-
ficiently high accuracy, reducing the relative error of RCPE by a half whereas
MLL fails to converge. This is due to the nature of the likelihood method by
maximizing the density field in presence of a particle/cell [106]. Due to the
coarser grid in the MLL approach, these positions are being distorted, hence
the divergence. Also with Gaussian noise the MLL is not able to converge,
meaning that imprecise cell position measurements in observation data lead
to insufficient results.
In Figure 6.8 the influence of the initial guess is being analyzed.

212



Results on Parameter Estimation Methods

It can be seen that MGPE for fixed grid level is the most stable method, al-
lowing large initial guess intervals without significantly changing the relative
error of the parameter estimates.
RCPE however is more sensitive to the initial guess, which results in bigger
relative errors when the initial guess is further away from the exact parame-
ters.
The MLL performs well only when the initial guess is close to the optimal
value, giving similar relative errors as MGPE and RCPE. However, for ini-
tial guesses further away from the optimal value (in our example for Θexact ±
10Θexact), MLL fails to converge to any solution.
Also here does the addition of the non-linear multigrid increases the inter-
val of the initial guess for the parameter Θ0 which is beneficial in situations
where no prior knowledge is available about the parameters.
MGPE and RCPE do give the best results in performance and parameter
recovery. Due to the insufficient performance of the maximum likelihood
method, we will not consider it in the next numerical tests.

Figure 6.6: Parameter estimation with no noise. MGPE finds the optimal parameters
whereas RCPE has slightly higher errors in both parameters, similar to MLL. The addition
of multi grid improves RCPE but leads to false values for MLL.

6.3.4 ii) Constant in time t, varying in space x

The velocity field is now vni = c(xi) and varies in space. We choose for our
investigation c(x) = 15 sin(2πx).
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Figure 6.7: Parameter estimation with 5% Gaussian noise.

Figure 6.8: Relative error of Θ with observation data udata with 2% Gaussian noise. As
initial guesses we have chosen Θ0 randomly within three intervals around the exact solution
[Θ− 5%Θ,Θ + 5%Θ], [Θ− 10%Θ,Θ + 10%Θ], [Θ− 25%Θ,Θ + 25%Θ].

Results ii)

Considering the results from Figure 6.9, 6.10 and 6.11, we see similar good
results for MGPE. The relative error has increased to 5.2% and 8.1% compared
to the constant velocity field with relative errors of 0.1% and 0.2% and the
results are improved by the addition of the non-linear multigrid. This is due
to the fact that on a coarser grid, less parameters of the velocity field are
needed, reducing the number of local minima as well. RCPE fails to converge
for fixed grid level for velocity fields v that are dependant on space, leading
to no reasonable parameter estimations.
The application of multigrid to RCPE helps to ensure convergence although
the errors are quite large with 8.4% and 11.4% compared to the MGPE which
delivers parameter estimates with lower relative error already on a fixed grid
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Figure 6.9: Parameter estimation with no noise for space-varying velocity field.

Figure 6.10: Parameter estimation with 5% Gaussian noise for space-varying velocity field.

level.
As for the initial guesses, still convergence is guaranteed with MGPE for
both fixed grid level and multi grid, although the relative error increases the
further the initial guess is from the actual value from 4.5% to 8% for the fixed
grid level and from 2% to 5.5% for multi grid.
Since RCPE already shows to fail for non-constant velocity fields, we will
proceed with the remaining numerical tests only for the MGPE.

6.3.5 iii) Varying in time t, varying in space x

In this case, we deal with velocity fields of the type vni = c(xi, tn) and choose
c(x, t) = 15 sin(2πx− 4t).
The difficulty here is the fact that the velocity field changes for each time
iteration, increasing the number of parameters. For this reason we apply
the temporal multi grid approach presented in Proposition 6.2.10. We will
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Figure 6.11: Relative error of Θ with observation data with 2% Gaussian noise and different
initial guesses Θ0 for space-varying velocity field.

investigate the following two approaches consisting in

1. Choosing for time data set undid with nd = 0, . . . , 100 the equivalent num-
ber of velocity field parameters vndi .

2. Using a reduced number for the time discretization of vn̂i with n̂ < nd
and interpolating the other values linearly as proposed in proposition
6.2.10.

The results are shown in Figure 6.12.

Results iii)

Comparing the two approaches through Figure 6.12 shows that in overall the
estimated parameters have a higher relative error compared to the constant-
in-time velocity field. However, by reducing the number of parameters by
the factor 10, and interpolating the in-between values of the velocity field in
time, we improve the overall performance reducing the relative error in both
parameter estimates by half. This is due to the fact that a reduced number
of parameters leads to a reduction of local minima, allowing better results
during the optimization.

6.3.6 iv) Varying in time t and space x with constraint

In this test case, the velocity field v is defined through the partial differential
equation (6.72) where the initial condition is known but not the diffusion
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Figure 6.12: Parameter estimation with no noise for space-time-varying velocity field for
n̂ = nd = 100 and n̂ = nd/10 = 10.

coefficient Dφ.
Here we apply first the MGPE on a fixed grid but afterwards apply the post-
smoothing step as proposed in proposition 6.2.12 after the initially applied
MGPE.

Figure 6.13: Relative error of the velocity field before and after postsmoothing.

Results iv)

In Figure 6.13 the difference between MGPE without post-smoothing and
with post-smoothing step is shown. Due to the post-smoothing step the rela-
tive error of the velocity field v slightly reduced from 16.8% to 16%.
Although this improvement is not significant large, it has managed to fur-
ther improve the parameter estimation although it has involved solving a
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second inverse problem. However the trade-off between computational cost
and relative error reduction strongly depends on the problem for which the
parameter estimation method is applied on.

Remark 6.3.1. We want to mention at this point that it is possible to further
improve the results by consecutively applying the MGPE with post-smoothing
step in order to obtain a first estimate for the diffusion coefficient D̃ and an
improved estimate velocity field ṽ due to the postsmoothing step, and con-
tinue the MGPE with post-smoothing step to improve the overall results of
post of both estimates, D̃ and ṽ. However, because of the additional compu-
tational time, only one application of the MGPE with post-smoothing step has
been used.

6.3.7 Conclusion

We conclude the one-dimensional case with the following observations. Over-
all RCPE and MLL underperform and often diverge in presence of noise and
convection-dominant convection diffusion equations. MGPE is able to recover
the parameters with a sufficiently high accuracy and with the additional ap-
plication of non-linear multigrid, MPGE improves in robustness, accuracy and
has an increased initial guess interval to ensure convergence towards the lo-
cal minima. The addition of a postsmoothing step within the non-linear multi-
grid method improves the overall accuracy of the velocity field only slightly
but more importantly dampens otherwise present oscillations.

6.3.8 Two dimensional case

For the two dimensional case we continue in a similar way as for the one-
dimensional case in Section 6.3.2.
In the following computations we will consider MGPE, since both RCPE and
MLL are working poorly for convection dominated models for the one-dimensional
case and consequently are not suited for the two-dimensional case which is
more complex.
For the two-dimensional convection-diffusion model (6.73) we use the finite
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difference scheme (3.24)

un+1
i,j = uni,j +Dµx

[
(uni+1,j−2uni,j+u

n
i−1,j)

2
+

(un+1
i+1,j−2un+1

i,j +un+1
i−1,j)

2

]
+Dµy

[
(uni,j+1−2uni,j+u

n
i,j−1)

2
+

(un+1
i,j+1−2un+1

i,j +un+1
i,j−1)

2

]
−λx

2

(
vx,ni+1,ju

n
i+1,j − v

x,n
i−1,ju

n
i−1,j

)
− λy

2

(
vy,ni,j+1u

n
i,j+1 − v

y,n
i,j−1ui,j−1

)
+λx

2

(
|vx,ni+1,j|uni+1,j − 2|vx,ni,j |uni,j + |vx,ni−1,j|uni−1,j

)
+λy

2

(
|vy,ni,j+1|uni,j+1 − 2|vy,ni,j |uni,j + |vy,ni,j−1|uni,j−1

)
(6.87)

for the discretized domain Ω := [0, 1]× [0, 1] with 4x,4y,4t > 0.

As for the velocity field v = (vx, vy), we now have the vectors vn := (vx,ni,j , v
y,n
i,j )i,j

for i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1 for fixed time iteration n and vectors
vx,ni,· = (vx,ni,j )i, v

y,n
i,· = (vy,ni,j )i for fixed j and n with i = 0, . . . , Nx + 1 and respec-

tively vectors vx,n·,j = (vx,ni,j )j, v
y,n
·,j = (vy,ni,j )j with fixed n and i for j = 0, . . . , Ny+1.

The objective functional K (Θ) of MGPE is extended for the two-dimensional
case with regularization term

R(Θ) = bDRD(D) + bvRv(v) + bvt

M∑
n=0

Rvt(v
n)

+bvx

Nx+1∑
i=0

Ny+1∑
j=0

Rvx(v
x,n
i,j ) + bvy

Nx+1∑
i=0

Ny+1∑
j=0

Rvy(v
y,n
i,j )

(6.88)

and regularization parameters bD, bvx , bvy , bvt ∈ R>0 and

RD(D) := |D|,

Rvx(v
n) := µ ‖ Txvn ‖1 +(µ− 1) ‖ Txvn ‖2

2,

Rvy(v
n) := µ ‖ Tyvn ‖1 +(µ− 1) ‖ Tyvn ‖2

2,

Rvt(vi,j) := µ ‖ Ttvni,j ‖1 +(µ− 1) ‖ Ttvni,j ‖2
2,

Rv(v) := µ ‖ v ‖1 +(µ− 1) ‖ v ‖2
2 .

(6.89)

We remark that in the two-dimensional case, the parameter estimation is
much more sensitive with respect to the initial guess. For values further
away from the optimal values, the parameter estimation method leads to di-
vergence in most cases, which also highly depends on the observation data
used for the parameter fitting.
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Compared to the one-dimensional parameter estimation problems, the num-
ber of parameters are squared which in consequence increases the number
of local minima and hence the sensitivity to initial guesses.
A stronger regularization does increase the chances of convergence but dis-
torts all the other estimated parameters, leading to much higher relative
errors.

Results a)

The results for the case a) are reported in Figure 6.14.

Figure 6.14: a) Parameter estimation with 1% Gaussian noise for space-varying velocity
field.

We can deduce that the parameter estimation is able to recover reasonable
parameter values with a low relative error of around under 12.2% for the
diffusion coefficient but higher relative errors of 28% and 32.1% for the veloc-
ity field, which is much higher than for the one-dimensional case due to the
squared number of unknown parameters of the velocity field.
However, also here the application of multigrid reduces the relative error
of all parameter estimates by half with 7.7% relative error for the diffusion
coefficient and 14.9% and 16.1% for the velocity field.

Remark 6.3.2. In the previous numerical tests for the parameter estimation,
the relative errors have been reduced, in average, by a factor of two, due to
the application of multi grid methods.
We noticed during the simulations that by using three grid levels g = 0, 1, 2

optimal parameter values were obtained with minimal relative errors. Using
coarser grids, i.e. applying the multi grid method beyond grid level g = 2

220



Results on Parameter Estimation Methods

does not improve the parameter estimates. However the computational time
can be reduced by around 25% for the two-dimensional parameter estimation
and by around 10% for the one-dimensional parameter estimation.

Remark 6.3.3. For the parameter estimation of the two-dimensional convec-
tion diffusion equation (6.73) we were only able to obtain satisfying results
with small relative errors for the case of space-varying velocity fields v(x, y).
Introducing space- and time-varying velocity fields v(x, y, t) in most cases has
led to divergence or solutions with high relative errors of at least 50%. This
is caused mostly by the highly increased number of parameters which are
needed when the velocity field depends on time.

In the next part of the thesis, we will finally prepare the parameter estima-
tion of the full laboratory model (1.45)-(1.47) with the data available, i.e. the
positions of tumour cells and immune cells.
For that we need to find means to transform these data in order to be com-
patible with our mathematical model.
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Part III

Parameter Fitting of Organ on
Chip(OOC) Model with Real Data



This part of the thesis is dedicated to the parameter fitting of the multi-
domain transmission model for Organs-on-Chip against real data.
Having derived a mathematical model of the OOC (1.45)-(1.47) based on the
laboratory experiment [31] conducted on a microfluidic chips, we are now
interested in calibrating our model based on the data acquired during the
experiments.
We have already presented with the multigrid parameter estimation algo-
rithm a robust and reliable method to recover model parameters from ob-
servation data. However, the observation data used during the parameter
estimation were macroscopic data in form of density in which also our model
is defined, whereas the data of the laboratory experiment are only available
as microscopic observation data in form of cell trajectories and positions.
In order to use such microscopic data in our macroscopic model, we will
introduce the kernel density estimate [147], which allows a non-parametric
transformation of the cell trajectories into density without a-priori knowledge
about the underlying density function.
The transformation between microscopic to macroscopic data through the
kernel density estimation will be used to extend the framework of the multi-
grid parameter estimation method to work on microscopic observation data
reliably. After numerical tests to validate the robustness and sufficient per-
formance of the method, we proceed with the calibration of the multi-domain
transmission model for the Organ-on-Chip based on the data obtained from
the laboratory experiment in [15, 31].
Due to the limited access of data available to fit the model, we need to make
additional simplifications based on assumptions about the experiment to deal
with the lack of any data regarding the chemical concentrations and gradi-
ents of chemoattractant and cytokine.
This part is structured in the following way.
In the first two sections we present methods to create microscopic data from
macroscopic data artificially and with the introduction of kernel density esti-
mation method, we present a non-parametric transformation that can trans-
form microscopic data back into macroscopic data. We then proceed with
including the kernel density estimation method into the multigrid parame-
ter estimation framework in order to obtain a method that is able to recover
model parameters from microscopic data.
After numerical tests to verify the robustness of the method, we proceed with
the model calibration of the OOC model against the data obtained from the
laboratory experiment. We propose several model preparations and simpli-
fications in order to calibrate our model well enough to reproduce the ex-
periment conducted on the microfluidic chip and conclude this part with a
comparison between real data from the experiment and from our model.
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Chapter 7

Density-Particle Estimation

This last chapter before the main numerical simulation of the OOC-full model
is dedicated to the proper transformation of the available observation data
with the purpose of using the parameter estimation methods presented in
the previous chapter and recover the intrinsic model parameters.
The mathematical model of the OOC (1.45)-(1.47), constructed in chapter 1.5,
the numerical method to derive an approximated solution in chapter 3 and
the multigrid parameter estimation method to recover the model parameters
in Chapter 6.2.3 are all defined for macroscopic data in form of density quan-
tities for the cells and chemical substances.
For this reason the observation data udata used in the parameter estimation
process need to be in the same form, i.e. must describe the density for a
given time t. Otherwise it would not be possible to recover feasible model
parameters that are specific to the given dynamics within our framework.
Unfortunately, in the laboratory experiments [31] and the observation data
accession through TrackMate© [137], only the trajectories for a limited num-
ber of cells are available to us as explained in Section 1.1.
Such microscopic observation data are not conform with the macroscopic
model that we derived and used to mathematically describe the dynamical
behaviour of the OOC.
In consideration of this issue, either the mathematical model must be de-
scribed in a microscopic way which involves stochastic partial differential
equation theory [93] or the microscopic observation data must be trans-
formed into macroscopic observation data. The latter choice is the one we
discuss further in detail in the upcoming sections.

In the following sections we will first describe the numerical practice to cre-
ate microscopic data according to a given density field. This is especially im-
portant to generate microscopic observation data artificially that hereinafter
can be used to test the numerical quality and stability of the transformation



Density to Particle Transformation

of the given microscopic observation data into their macroscopic equivalent,
which we present in the second section of this chapter.
Lastly, an extension of the numerical simulations for the parameter estima-
tion of the convection-diffusion equation given in chapter 6 is going to be
created that involves the additional step of microscopic-macroscopic data
transformation and compare its result.

7.1 Density to Particle Transformation

Creating macroscopic observation data of general functions F (x) or probabil-
ity density functions f(x) artificially is a simple task [134]. One just need to
choose points (xi)i=1,..., to evaluate F (xi) (resp. f(xi)) and obtain the desired
data.
If a closed analytical form of the solution is not available, which is often
the case for partial differential equations [30], we can use finite difference
methods and calculate approximation with high accuracy by using high order
methods or very small time steps 4t and mesh grid size 4x,4y to obtain ar-
tificial observation data. However, we are only able to obtain artificial data
of the same type as the functions we used to derive them. For probability
density functions it is the probability and for partial differential equations it
is the macroscopic quantity used in the partial differential equation.
If we want to derive microscopic data in such a way, we would need the func-
tion to be defined for such quantities.
For the convection-diffusion equation this can be done if we view the partial
differential equation as a stochastic differential equation, where each ran-
dom movement of a microscopic particle can be described as a stochastic
process, such as the random walk, where at each step the particle moves to
a certain direction according to a given probability [93]. In the limit of the
number of particles N , one can obtain the partial differential equation, where
the quantities are not the trajectories, i.e. location, of each particle any more
but a probability density which indicates the probability that a particle is lo-
cated at a certain point in space. We call the samples that are distributed
according to a given probability distribution also random numbers.
The most common examples are uniform distributed random numbers ac-
cording to the uniform distribution.

Definition 7.1.1. A random variable on a probability space (Ω,F , P ) is a
function

X : Ω→ R, (7.1)

that assigns a real number to each element in the sample space of a random
experiment.
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A random variable X is called continuous is possible values comprise either a
single interval (either finite or infinite) of real numbers or a union of disjoint
intervals. Usually random variables are represented with capital letters and
specific values of a random variable x are represented with small letters and
are also called random variates/random numbers.

Definition 7.1.2. A function f with

f : R→ R (7.2)

is called probability density function of a continuous random variable X such
that 

f (x) ≥ 0,∫ ∞
−∞

f (x) dx = 1,

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

(7.3)

Definition 7.1.3. We say that a random variable X has uniform distribution
on the interval [a, b], if it has the probability density function f given by

f(x) =


1
b−a , for a ≤ x ≤ b

0, else.
(7.4)

We write X ∼ U [a, b]. The probability of a random number to be at a specific
point in the interval [a, b] is equally distributed.

Definition 7.1.4. A random variable X is Gaussian, also known as normal,
with parameters µ ∈ R (mean value) and σ2 > 0 (variance) if its probability
density function is as follows

f(x) =
1√

2πσ2
e−

1
2( (x−µ)

σ )
2

. (7.5)

We write X ∼ N(µ, σ2).

The computation of such uniform distributed random numbers can be done
numerically and is called uniform pseudo-random number sampling [133].
Pseudo-random in the sense that the computed numbers are not truly random
since they are determined completely by an initial value, the seed.
This gives rise to non-uniform pseudo-random number sampling to gener-
ate pseudo-random numbers that are distributed not according to a uniform
probability distribution (7.4) but to a different probability distribution.
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The procedure to generate such numbers consists in transforming a sequence
of in dependent uniformly distributed random numbers on [0, 1] into a se-
quence of independent random numbers of a different probability distribu-
tion.
The algorithms can be categorized in the following [73]:

• Inversion methods.

• Rejection methods.

• Composition methods.

• Methods specifically designed for a certain probability distribution.

The inversion method requires the additional computation of the cumulative
distribution function F (x) :=

∫ x
−∞ f(z)dz and composition methods are based

on the assumption that the probability distribution f can be represented as a
decomposition of several other probability distributions.
Thus, in this thesis we only present the acceptance-rejection method that has
been used to generate all the artificial microscopic observation data for the
numerical simulations.
It is a method that can be applied to all kinds of distributions in Rm with a
probability density and as such is a standard algorithm to generation samples
from non-uniform uni- and multivariate distributions.
The idea of the acceptance-rejection method is that if a point (X, Y ) ∈ R2 is
uniformly distributed in the domain between the image of the density func-
tion im(f) and the x-axis, then X is distributed according to f .
The theoretical foundation for the acceptance-rejection method is given by
the following theorem.

Theorem 7.1.5 ([73]). Let f(x) be a density function with a constant α > 0.
If X and Y are uniformly distributed on

Gα,f := {(x, y)|0 < y ≤ αf(x)}, (7.6)

then X is a random variable with density f(x).

The acceptance-rejection method described in Algorithm 7.1 can be easily
generalized to higher dimensions (see Algorithm 7.1 for 2D) . However there
is an exponential increase in volume associated with increasing the spatial di-
mension, which results in much more sample rejections. Since we only work
in one and two-dimensions, this does not affect us much.

As stated this is the acceptance-rejection method in its simplest form by using
uniformly distributed random variables to generate random variates accord-
ing to a given density f(x). Since the enveloping function is the uniform hat
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Algorithm 7.1
1D-Acceptance-Rejection-Method

1: procedure acceptanacerejection1D (f : [a, b]→ R>0, sample size N )
2: Set α > 0 as upper bound: α ≥ f(x), ∀x ∈ [a, b]

3: Set X := {}
4: counter = 0

5: while counter < N do
6: Generate random variate x ∼ U(a, b)

7: Generate random variate y ∼ U(0, 1)

8: if y ≤ αf(x) then
9: Add x to the sample set X

10: counter = counter + 1

11: end if
12: end while
13: end procedure

Algorithm 7.2
2D-Acceptance-Rejection-Method

1: procedure acceptanacerejection2D(f : [a, b]× [c, d]→ R>0, sample size N)
2: Set α > 0 as upper bound α ≥ f(x, y), ∀x ∈ [a, b], y ∈ [c, d]

3: Set X := {}
4: counter = 0

5: while counter < N do
6: Generate random variate x ∼ U(a, b)

7: Generate random variate y ∼ U(c, d)

8: Generate random number z ∼ U(0, 1)

9: if z ≤ αf(x, y) then
10: Add (x, y) to the sample set X
11: counter = counter + 1

12: end if
13: end while
14: end procedure

function, many of the computed sample points will be rejected. Choosing dif-
ferent enveloping functions can improve the generation speed but we will not
further discuss these details and refer to [73, 133] where not only improve-
ments of the rejection methods are stated but also other methods presented.
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Acceptance-Rejection method for partial differential equations

With regards to partial differential equations such as the convection-diffusion
equation where the analytical solution is not available and must be calculated
numerically with a finite difference scheme to obtain the approximation at
discrete points (xi, yj) we can either use interpolation method [29] to obtain
a continuous density function f(x, y) or a discrete version of the rejection
method.
For the latter a small change must be made with the choice of the random
variables X, Y since we only allow values at discrete points where the finite
difference scheme was defined on.

Theorem 7.1.6 ([73]). Let un be the discrete values of a density field, i.e
uni,j ≥ 0 of a partial differential equation on the domain Ω = [a, b] × [c, d],
obtained through a finite difference schemes and discretized domain with
xi := a+ i4x, yj := c+ j4y with i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1, such that
xNx+1 = b and yNy+1 = d.
If X and Y are distributed according to a discrete uniform distribution with
X ∼ U{0, Nx + 1}, Y ∼ U{0, Ny + 1} and Z uniform distributed Z ∼ U(0, 1) on

Gα,un :=
{

(i, j, z) |0 < z ≤ αuni,j
}
, (7.7)

then (X, Y ) is a random variable with density un.

Algorithm 7.3 is based on theorem 7.1.6.
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Algorithm 7.3
discrete Acceptance-Rejection-Method

1: procedure discreteacceptanacerejection2D (discrete density field un,
sample size N)

2: Set α := max
i,j

uni,j

3: Set X := {}
4: counter = 0

5: while counter < N do
6: Generate random variate i ∼ U{0, . . . , Nx + 1}
7: Generate random variate j ∼ U{0, . . . , Ny + 1}
8: Generate random variate z ∼ U(0, 1)

9: if z ≤ αuni,j then
10: Add (xi, yj) to sample set X
11: counter = counter + 1

12: end if
13: end while
14: end procedure

With Algorithm 7.3 we are now able to generate microscopic observation data
artificially, which we show in the following example

Example 7. We will apply the acceptance-rejection method on the following
examples:

i) One-dimensional:

a)

f1 (x) =


e−18(x−0.5)2+2e−18(x−0.3)2∫ 1

0 e
−18(x−0.5)2+2e−18(x−0.3)2dx

, for 0 ≤ x ≤ 1,

0, else,
(7.8)

b) 
∂tu(x, t) = D∂xxu(x, t)− c∂xu

u(x, 0) = u0(x) = f1(x)

∂u
∂x

(x, t)
∣∣
x=0,x=1

= 0

(7.9)

with D = 1 and c = 3 for x ∈ [0, 1] and t = 0.03.

ii) two-dimensional

f2 (x, y) =
e−18(x−1)2−10(y+1)2

+ e−18(x+0.4)2−18(y−0.3)2

+ e−18x2−18(y+0.4)2∫
Ω e
−18(x−1)2−10(y+1)2

+ e−18(x+0.4)2−18(y−0.3)2
+ e−18x2−18(y+0.4)2

dΩ
,

(7.10)
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(a) (b)

Figure 7.1: Blue curve shows the density function of a) (7.8) and b) (7.9) with their corre-
sponding sample set (red) derived through acceptance-rejection method for N = 100.

(a) Overlay of density field (7.10) with N =

1000 sample points(red) obtained through
acceptance-rejection method.

Figure 7.2

for the domain Ω = [−0.5, 1.5]× [−0.5, 1.5].
The resulting sample points can be seen in Figure 7.1 and Figure 7.2.

In the same way we have generated particle representation of the numerical
experiment in Chapter 3 in the Figure 3.14.
Of course the generation is random for a finite number of sample points.
We remind that the purpose of generating such microscopic data artificially
is on the one hand to create a test environment for parameter estimation
methods in presence of microscopic observation data and on the other hand
to have a tool to visualize the dynamics of mathematical models in particle
form.

231



Particle to Density Transformation

7.2 Particle to Density Transformation

Having established the acceptance-rejection method to create artificial mi-
croscopic data for the purpose of testing the efficiency of parameter esti-
mation methods, we will now deal with the question of how to transform
microscopic data into macroscopic data, i.e positions into density.

Definition 7.2.1. Let X = {x1, . . . , xn} be an independent and identically
distributed sample set of n observations according to an unknown probability
density function f(x). Then the density estimate f̂h(x) of f(x) assigns each
sample point xi a function Kh(xi, x) called a kernel function with

f̂h(x) =
1

n

n∑
i=1

Kh(xi, x) (7.11)

with bandwidth parameter h ∈ R>0 that determines the amount of smoothing
on the density estimate.
The kernel function Kh(xi, x) is non-negative and bounded for all x

0 ≤ Kh(xi, x) <∞, ∀x ∈ R (7.12)

and ∫ ∞
−∞

f̂h(x) = 1. (7.13)

For symmetric kernel functions we can rewrite (7.11) in the most frequently
used form

Kh (xi, x) =
1

h
K

(
x− xi
h

)
. (7.14)

That the kernel density estimate (7.11) is a good approximation of the under-
lying density function f is shown in the following theorem.

Theorem 7.2.2 ([107]). Let Kh(xi, x) be a kernel function of bounded vari-
ation. Furthermore let the probability density function f(x) be uniformly
continuous.
The bandwidth is defined as h(n) = c

nα
with 0 < α < 1

2
, c > 0 and sample

size n ∈ N. Then the sequence of kernel density estimates f̂h(x) uniformly
converges in probability to f(x)

P

(
lim sup
n→∞

|f̂h(n)(x)− f(x)| = 0

)
= 1. (7.15)

Theorem 7.2.2 states that for a sample size n → ∞ and bandwidth h → 0

the kernel density estimate f̂h is converging in probability towards the actual
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probability density function f , independently of the choice of kernel function
Kh and in a weaker sense that with an appropriate bandwidth h an arbitrarily
accurate estimate of the density function can be made with an appropriate
large sample size n [147].
Before we continue, we define some important properties regarding kernel
density estimation.

Definition 7.2.3 (Bias). Let f̂h(x) be a kernel density estimate (7.11) for the
unknown probability density f(x). Then the bias is defined as

Bias
[
f̂h(x)

]
= E

[
f̂h(x)

]
− f(x)

= 1
n

n∑
i=1

E [Kh (x− xi)]− f(x)

= E [Kh (x− x)]− f(x),

(7.16)

which leads with a second-order Taylor expansion to

Bias
[
f̂h(x)

]
=
h2

2
f
′′
(x)

∫
s2K(s)ds+ o

(
h2
)
, as h→ 0. (7.17)

Definition 7.2.4 (Variance). Let f̂h(x) be a kernel density estimate (7.11) for
the unknown probability density f(x). Then the variance is defined as

V ar
[
f̂h(x)

]
= V ar

[
1
n

n∑
i=1

Kh (x− xi)

]

= 1
n
V ar [Kh (x− x)] ,

(7.18)

which with a Taylor expansion leads to

V ar
[
f̂h(x)

]
=

1

nh
f(x)

∫
K2(s)ds+ o

(
1

nh

)
, as nh→ 0. (7.19)

From the asymptotic behaviour of the bias (7.17) and the variance (7.19) it is
clear that the bias is proportional to h2. Hence a decrease in the bandwidth
h results in a reduction of the bias whereas for the variance it is proportional
to 1

nh
and moreover a larger bandwidth h is necessary to reduce the variance

of the kernel density estimate.
This shows the trade-off between bias and variance since for fixed sample
size n, and reduction of the bias by decreasing bandwidth h leads to a in-
crease in variance and vice versa.
Both quantities (7.17) and (7.19) depend on the unknown probability function
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f(x) and its second derivative f
′′
.

Looking at the mean squared error MSE [57]

MSE
[
f̂h(x)

]
= E

[(
f̂h(x)− f(x)

)2
]

= V ar
[
f̂h(x)

]
+Bias

[
f̂h(x)

]2

(7.20)

we can deduce that asymptotically with (7.17) and (7.19) the mean squared
error converges towards zero if h → 0 and nh → ∞ thus the kernel estimate
is consistent to the probability density function f .

The univariate kernel density estimation in definition 7.2.1 can be easily ex-
tended to the multivariate case [125].

Definition 7.2.5. Let X = {X1, . . . ,Xn} be sample set of m-dimensional
random vectors Xi which are distributed according to a density function
f(x1, . . . xn). Then the multivariate kernel density estimate f̂H,n is defined
as

f̂H,n(x) =
1

n

n∑
i=1

KH (x−Xi) =
1

n detH

n∑
i=1

K(H−1 (x−Xi)) (7.21)

with x,Xi ∈ Rm, bandwidth matrix H ∈ Rm×m which is symmetric and positive
definite and multivariate kernel function K

As we will only apply the kernel density estimation (7.21) in two spatial di-
mensions at most, we can state that the bandwidth matrix H ∈ R2×2 is in the
form

H :=

(
h1 h2

h2 h3

)
(7.22)

under the condition
h1 > 0,

h1h3 − h2
2 > 0.

(7.23)

The form of the bandwidth matrix H (7.22) ensures symmetry and conditions
(7.23) positive-definite, which are derived under the theorem that a matrix is
positive-definite iff all its minors are positive.
For continuous independent random variables (X1, . . . , Xm) ∈ Rm the multi-
variate density f (x1, . . . , xm) can be defined as the product

f (x1, . . . , xm) = f1(x1) · · · · · fm(xm). (7.24)

Many types of kernel functions can be found in the literature [57, 128, 131,
147] and basically any function K : R → R that satisfies

∫∞
−∞K(x)dx = 1

qualifies as a kernel function. However since we are interested in estimating
probability densities, we require K(x) ≥ 0.
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However there exist a variety of other not non-negative kernel functions that
possess certain properties to deal with bounded domains but we refer to [57].
In the following we mention the three most used kernel function

• Gaussian

– univariate

K (x) =
1√
2π
e−

x2

2 (7.25)

– multivariate

K (x1, . . . , xn) =
1√

(2π)2
e−

1
2
xTx (7.26)

• Uniform

K (x) =


1
2

for |x| < 1

0 for |x| ≥ 1
(7.27)

• Epanechnikov

– univariate

K (x) =


3
4

(1− x2) , for |x| < 1,

0, for |x| ≥ 1
(7.28)

– multivariate

K (x1, . . . , xn) =


1

2cn
(n+ 2) (1−

∑n
i=1 x

2
i ) , if

∑n
i x

2
i ≤ 1

0, else,
(7.29)

where cn denoted the volume of the n-dimensional unit circle.

7.2.1 Boundary Correction

In the definition of the kernel density estimate we have assumed that the
density is supported on the entire real domain (−∞,∞) (resp. (−∞,∞) ×
(−∞,∞).) However if the density is only defined on a bounded domain, it is
well known that the kernel density estimation performs poorly [38]. With no
loss of generality, we assume the bounded interval [0, 1] (resp. [0, 1] × [0, 1])
for a probability density field f(x) (resp. f(x, y)).
For a given kernel estimate f̂(x) with bandwidth h we call [0, h) and (h, 1] the
boundary region.
The main reason for the so called boundary effects is that the kernel density
estimate f̂(x) exhibits large boundary bias at the boundaries [35, 38]. With
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a Gaussian kernel (7.25) for example, we will always have non-zero mass
outside the domain

f̂(x) > 0, for x < 0 and x > 1. (7.30)

For cases of densities where the majority of data are not around the boundary
regions, the boundary effects are negligible. However for the opposite case,
special care needs to be taken.
This is especially true for large bandwidth h which is affected by the noise
level of data as well which requires a stronger smoothing effect [57].
Secondly, the kernel estimate does not respect the possible boundary condi-
tions of the domains.
In the literature there are several techniques applied to this problem on re-
moving the boundary effects on the kernel estimate [35, 38]:

• Reflection method
This method is especially designed for homogeneous Neumann condi-
tions ∂f

∂n

∣∣
δΩ

= 0 for the outer normal vector n [35].

• Boundary kernel method
At each point in the boundary region a different kernel function K is
used [125].

• Transformation method
Mapping the data to the real line (−∞,∞) and apply the kernel density
estimation, which afterwards is mapped back to the bounded interval.

• Pseudo-data method
Creation of data beyond the boundary.

In the following we will only consider the reflection method due to its easy
implementation.

Definition 7.2.6. Let the definition of 7.2.1 hold and f(x) be supported on
[a, b]. Then the reflection method for the boundary correction of a kernel
density estimate (7.11) is defined as

f̂ reflecth (x) =
1

nh

n∑
i=1

(
K

(
x− x−i
h

)
+K

(
x− xi
h

)
+K

(
x− x+

i

h

))
(7.31)

for a ≤ x ≤ b where x+
i = 2b− xi and x−i = 2a− xi.

Since each estimator f̂h(x) differs from the original unknown f(x), some mea-
sures of discrepancy between these two quantities must be established to
evaluate the accuracy of the estimate.
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Definition 7.2.7. Let f(x) be a probability density function and X = {x1, . . . , xn}
an independent sample distributed according to f(x).
Also let f̂h(x) be the kernel density estimate (7.11).
Then the mean integrated square error (MISE), asymptotic mean integrated
squared error (AMISE) and integrated square error (ISE) are defined as

MISE
(
f̂h(x)

)
=

∫ ∞
−∞

MSE
(
f̂h(x)

)
dx

=

∫ ∞
−∞

E

[(
f̂h(x)− f(x)

)2
]
dx

=

∫ ∞
−∞

Bias2
(
f̂h(x)

)
dx+

∫ ∞
−∞

V ar
(
f̂h(x)

)
dx,

AMISE
(
f̂h(x)

)
= h4

4

(∫ ∞
−∞

s2K(s)ds

)2 ∫
f
′′

(x)2 dx

+ 1
nh

∫ ∞
−∞

K2(s)ds,

(7.32)

ISE
(
f̂h(x)

)
=

∫ ∞
−∞

(
f̂h(x)− f(x)

)2

dx

=

∫ ∞
−∞

f̂ 2
h(x)dx− 2

∫ ∞
−∞

f̂h(x)f(x)dx+

∫ ∞
−∞

f 2(x)dx.

(7.33)

7.2.2 Bandwidth Parameters

We have already seen in the definition of bias, variance and mean squared er-
ror that the bandwidth h in the one-dimensional case and bandwidth matrix
H in the multi-dimensional case control the smoothness of the estimate and
is essential for the quality of the estimate [57, 125].
A large h yields to an oversmoothed estimate which increases the bias and
important features of the true density function are obscured, whereas a small
h yields to an undersmoothed estimate, which increased the variance of the
estimate such that the smallest feature such as features introduced by noise,
will be present in the estimate. This is depicted in Figure 7.3.
In the univariate kernel density estimation (7.11), the uniform kernel func-
tion is equivalent to a histogram where the width of the bin is in fact the
bandwidth h.
For the multivariate kernel density estimation the bandwidth H not only con-
trols the width of the bin but also the orientation, which considerably influ-
ence the shape of the density estimate [125]. The effect can be seen in Figure
7.4, where we show the kernel density estimate for three different bandwidth
matrices H:

• positive scalar times the identity matrix: H =

(
1
20

0

0 1
20

)
.
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Figure 7.3: Effect of the bandwidth size on kernel density estimate. Blue: h > hopt creates
an oversmoothed estimate. Red: optimal bandwidth h∗. Yellow: h < hopt creates an under-
smoothed estimates with many spurious oscillations.

• diagonal matrix H =

(
1

100
0

0
1
20

2

1
100

)
.

• symmetric positive definite matrix H =

 3
40

√
3
40

2 − 1
20

2√
3
40

2 − 1
20

2 3
40

 .

7.2.3 Kernel and Bandwidth Selection

Choosing the optimal bandwidth is essential for the quality of the kernel den-
sity estimate. The error estimation in Definition 7.2.7 can be used to de-
termine the optimal bandwidth hopt by minimizing either the MISE, AMISE
(7.32) or ISE (7.33).
This also means that each optimal bandwidth differs depending on which er-
ror estimate has been used.
Because each error estimate involves the unknown density function f(x), us-
ing the error estimates to determine h exactly is impossible. However, there
exists a variety of methods to calculate the bandwidth parameter and we will
describe two of the most commonly used ones.

The first one we will present is Silverman’s Rule-of-Thumb [131] as a plug-in
method.
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(a) Kernel density estimate for
positive scalar times the identity
matrix.

(b) Kernel density estimate for
diagonal matrix.

(c) Kernel density estimate for
symmetric positive definite matrix.

Figure 7.4: Kernel density estimation for different bandwidth matrices H. The same mi-
croscopic data is used for the kernel density estimation. However, the choice of bandwidth
matrix H considerably changes the shape of the resulting density estimate. In particular
the density estimate (b) and (c) are seemingly stretched out compared to (a) which uses the
identity matrix as bandwidth matrix.

Rule of Thumbs Bandwidth

The main idea behind this method is based on AMISE and to replace the un-
known density function f(x) with an estimate.
Silverman [131] assumes the density function f(x) to be a normal probabil-
ity distribution N(µ, σ2) with mean µ and variance σ2 and a Gaussian kernel
function φ(x).
By definition of AMISE (7.32) we have

‖ f ′′ ‖2
2=

∫ ∞
−∞

f ′′(x)2dx =
1

σ5

∫
φ
′′
(x)2dx =

1

σ5

3

8
√
π
≈ 0.212

1

σ5
. (7.34)

Replacing the unknown standard deviation σ in (7.34) by an estimate σ̂ ac-
cording to

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (7.35)
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with the arithmetic mean x̄ := 1
n

n∑
i=1

xi we can obtain the Rule-of-Thumb band-

width by using AMISE (7.32), differentiating it with respect to the bandwidth
h and solve the first-order condition for h which leads to

h =


∫ ∞
−∞

K2(s)ds

n

∫ ∞
−∞

f ′′ (x)2 dx

(∫ ∞
−∞

s2K(s)ds

)2


1
5

. (7.36)

We take as the kernel function the Gaussian kernel function K = φ and use
(7.34) in (7.36) to obtain the Rule-of-Thumb bandwidth

ĥROT =
(

4σ̂5

3n

) 1
5 ≈ 1.06 σ̂

n
1
5
. (7.37)

Although the Rule-of-Thumb bandwidth is a data-based bandwidth which is
frequently used in kernel density estimations in statistic program [131] and
also in MATLAB©, the more the estimate can decrease in quality the more
the unknown density function f differs from a normal distribution.

Least Square Cross Validation Bandwidth

The second method to obtain an optimal bandwidth is the Least squares cross
validation method (LSCV) which uses the ISE [147].

In the ISE (7.33) expression,

∫ ∞
−∞

f̂ 2
h(x)dx can be calculated from data, and∫ ∞

−∞
f 2(x)dx does not depend on the bandwidth h and thus does not need to

be considered in the minimization of ISE over h.

The term

∫ ∞
−∞

f̂h(x)f(x)dx is equivalent to the expected value of f̂h(X). As

such, we can estimate the expected value with the leave-one-out estimator

̂
E
[
f̂h(X)

]
=

1

n

n∑
i=1

f̂h,−i(Xi) (7.38)

with

f̂h,−i(x) =
1

n− 1

n∑
j=1,j 6=i

Kh (x−Xj) . (7.39)

Using these we obtain the Least Squares Cross-Validation criteria

LSCV (h) =

∫
f̂ 2
h(x)dx− 2

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(Xi −Xj). (7.40)
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Since LSCV (h) does not depend on any unknown quantities anymore, we can
apply a minimization method (see chapter 5) to obtain the optimal bandwidth
parameter ĥLSCV .

Bandwidth Selection through Minimization

The third method is the most intuitive one to use under the requirement that
the density function f is actually known.
Then any of the three error estimates MISE, AMISE (7.32) and ISE (7.33) can
be minimized without any further assumptions.
This approach is of special interest for the future numerical simulations of
this thesis because we want to fit a density function f to the observation data
which we already assume to be distributed according to said density function.
Of course, this leads to a considerable bias since in real observation data we
have constructed a mathematical model based on assumptions, which only
approximately represents the actual dynamics of the density function from
which the observation data are obtained from.
However, the bias induced towards the observation data is not strong in view
of the fact that the model parameters obtained in such a way can be used
to infer the quality of the approximation by logical reasoning and a-priori
knowledge of the magnitudes of the model parameters.

Multivariate Bandwidth Selection

The derivation of optimal bandwidth matrices H ∈ Rm×m for the multivariate
kernel density estimation can be obtained in a very similar way to the uni-
variate case [125].
For Silverman’s Rule-of-Thumb bandwidth matrix [131] we assume that the
multivariate probability density function f(x1, . . . , xm) is a multivariate nor-
mal distributed N(µ,Σ), and the kernel function used is the multivariate
Gaussian.
Making the additional assumption that the bandwidth matrix H and covari-
ance matrix Σ are diagonal matrices leads to

ĥj =
4

m+ 2

1
m+4

n−
1

m+4σj, (7.41)

which gives us the previously derived Silverman’s Rule-of-Thumb for m = 1.
Making a more general assumption that H is proportional to the square root
of the covariance matrix Σ

1
2 we obtain the multivariate Rule-of Thumb band-

width

Ĥ =
1

n
1

m+4

Σ̂
1
2 . (7.42)
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Also the least square cross-validation method can be generalized for the mul-
tivariate case. We refer to [46] for the derivation which is very similar for the
one-dimensional case.

LSCV (H) =
1

n2 detH

n∑
i=1

n∑
j=1

∫ ∞
−∞

K(H−1(X−Xi))K(H−1(X−Xj))dX. (7.43)

Minimizing LSCV (H) (7.43) over H means solving a m2-dimensional mini-
mization problem.

7.2.4 Induced Transformation Error

In this section we will investigate of the numerical error induced by the
density to particle to density transformation where we first create artificial
macroscopic observation data, derive microscopic observation data with sam-
ple size n with the acceptance-rejection method (see Algorithm 7.1-7.3) and
transform the sample back to macroscopic observation data in form of den-
sity with the kernel density estimation for a variety of bandwidth selection
methods.
We will compare each kernel density estimation for the Rule-of-Thumb band-
width and through minimization and investigate the influence of the sample
size n with regards to the error between the artificial macroscopic observa-
tion data with the transformed artificial macroscopic observation data.

One-dimensional

Example 8. For the following numerical simulations we will focus on two
kinds of probability density function:

(a) An explicitly defined probability density function

f1 (x) =


e−18(x−0.5)2+2e−18(x−0.3)2∫ 1

−1 e
−18(x−0.5)2+2e−18(x−0.3)2dx

for −1 ≤ x ≤ 1

0 else,
(7.44)

which is a superposition of two truncated normal distributions, bounded
at the interval [−1, 1].

(b) The second density is the solution of the one-dimensional convection-
diffusion equation

∂tu(x, t) = D∂xxu(x, t)− c∂xu,

u(x, 0) = u0(x) = f1(x),

∂u
∂x

(x, t)
∣∣
x=−1,x=1

= 0

(7.45)
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with diffusion coefficient D = 1, convection coefficient c = 3 on the do-
main Ω := [−1, 1].
We also assume

∫ 1

−1
u(x, t)dx =

∫ 1

−1
u(x, 0)dx = 1 for all t > 0.

We solve (7.45) with a finite difference scheme for time T = 1 and in-
vestigate the probability density at u(x, 1).

The microscopic observation data in form of the random sample sets X 1 for
a) f1(x) are being obtained by the acceptance-rejection method and X 2 for
b) u(x, T ) are being obtained by the acceptance-rejection method for sample
sizes N = 100, 1000.
For the transformation back to density we use the kernel density estimation
with the reflection method (7.31) at the boundaries x = −1 and x = 1.
As for the bandwidth selection we compute the bandwidth with both the Rule-
of-Thumb method (7.37) ĥROT , and the minimization method for the ISE(h)

(7.33) ĥISE.
In Figure 7.5 and in Figure 7.6 we can see the comparison between the dif-
ferent experiments.

Figure 7.5: KDE with different sample sizes N = 50, 100, 1000. The more samples are
available, the more accurately the kernel density estimate approximates the exact solution.

Two-dimensional

Next, we will conduct the same experiment for the two-dimensional probabil-
ity density.
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(a) KDE of 1D-convection-diffusion equation for sample size
N = 1000. Bandwidths are hROT = 0.0671 and h∗ = 0.0658.

(b) KDE of 1D-convection-diffusion equation for sample size
N = 100. Bandwidths are hROT = 0.094 and h∗ = 0.12.

Figure 7.6

Example 9. As in example 8 we investigate the multivariate truncated nor-
mal distribution

f2 (x, y) =


e−18(x−1)2−10(y+1)2+e−18(x+0.4)2−18(y−0.3)2+e−18x2−18(y+0.4)2∫

Ω e
−18(x−1)2−10(y+1)2+e−18(x+0.4)2−18(y−0.3)2+e−18x2−18(y+0.4)2dΩ

, for −1 ≤ x ≤ 1

and −1 ≤ y ≤ 1,

0, else
(7.46)

on the bounded domain Ω := [−1, 1]× [−1, 1].
Similarly to the one-dimensional test we create a two-dimensional sample set X 1 with
the acceptance-rejection method with a sample size of N = 1000 and apply the mul-
tivariate kernel density estimation (7.21) with both the multivariate Rule-of-Thumb
method (7.42) and the minimization of ISE(H) method as bandwidth selection meth-
ods to select the bandwidth matrix H. The results are shown in Figure 7.7.
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(a) Original density function.

(b) KDE: Rules-of-Thumb
HROT = diag (0.1087, 0.1605).

(c) KDE:L2-norm minimized
H = diag (0.0739, 0.0757).

Figure 7.7: Comparison between the original density function (a) with kernel density esti-
mates with the Rule-of-Thumb bandwidth and L2-norm minimized bandwidth. (b) is smoother
but dissolves the transition areas between the three areas of highest concentration. (c) is
less smooth but magnitudes of highest concentration are recovered.

Conclusion of Example 8 and 9

We can conclude from the results from examples 8 and 9, that in general an
increase of the sample size N does not only decrease the error between the
exact artificial data and the kernel density estimation through particle trans-
formation but also allows a smaller bandwidth size h and H.
Furthermore, it is becoming clear that the Rule-of-Thumb bandwidth allows
the kernel density estimation to perform quite well, however does the band-
width obtained from the minimization of ISE delivers smaller relative errors
in the L2-norm.
In the two-dimensional case the difference becomes more apparent due to
the fact that the Rules-of-Thumb only allows diagonal bandwidth matrices H
whereas with the ISE minimization we are able to include full bandwidth
matrices H.
The relative error errrel of the kernel density estimation between the Rules-
of-Thumb bandwidth matrix with errrel = 0.2593 and the L2-norm minimized
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bandwidth matrix with errrel = 0.1644 shows the difference. This is also due
to the fact that the magnitude of the spikes are much more accurately repre-
sented for the L2-norm minimized kernel density estimate with 1.6 compared
to the original magnitude of 1.78, whereas the Rule-of-Thumb kernel density
estimate only reaches the magnitude of around 1.2. However we need to
remark that the Rule-of-Thumb kernel density estimate, by definition, mini-
mizes over the MISE.

7.3 Parameter Estimation with Kernel Density

Estimation

With the kernel density estimation at hand we have a tool that can transform
microscopic observation data into macroscopic observation data udata which
then can be used in our parameter estimation method presented in chapter
6.2.

Definition 7.3.1. Let the microscopic observation data X be

X :=
(
X l
)
l=0,...,M

:= (xlm, y
l
m)m=1,...,M(l), (7.47)

where X l with l ∈ N is the set of the M(l) particle positions (xlm, y
l
m) at time

tl.
Then we define the corresponding macroscopic observation data udata through
the kernel density estimation as

udata (H) :=

 u0
data
...

uMdata

 (7.48)

with
uldata(H) := f̂H,M(l)(x) (7.49)

where f̂H,M(l)(x) is the kernel density estimation (7.21) for bandwidth matrix
H ∈ R2×2 with M(l) particles in the set X l.

There are two approaches to apply a parameter estimation method with mi-
croscopic data X :

1. Transforming the microscopic observation data X into macroscopic ob-
servation data udata through kernel density estimation and applying a
parameter estimation method afterwards.

2. Applying the kernel density estimation within the parameter estimation
method.
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In the first approach the bandwidth h (resp. H) is selected with a bandwidth
selection method and then we proceed with the parameter estimation.
Nevertheless, there is a trade-off between simplicity and accuracy. Depend-
ing on the sample size N and choice of bandwidth, we inevitably introduce
a certain level of noise to the obtained macroscopic observation data, as we
have seen in Examples 8 and 9.
The second approach consists in taking advantage of the fact that we expect
that the observation data udata are well modelled by the real density function
f which models parameters we want to fit. Hence the choice of bandwidth
can be plugged into the parameter estimation method itself as an additional
unknown parameter. This is especially reasonable since most of the band-
width selectors are data-based methods since the density function f is either
unknown or only weak assumptions are available. In our problem however,
we assume that the data is coming from a known density function where only
the model parameters are unknown.
Essentially this approach is similar to the approach for the estimation of the
optimal bandwidth through the minimization of the ISE (7.33), where the ex-
act density function f is being used. Although in case of real observation
data, where the true density function f is often unknown and just an approx-
imation of the true density function is available, using such an approximated
density function for the minimization of the ISE to obtain the bandwidth can
improve the overall quality of the kernel density estimation and as such the
parameter estimation.
This is the motivation of the Kernel Density Estimation Parameter Estimation
Method (KDE-PE).

KDE-Parameter Estimation Method (KDE-PE)

In this context of parameter estimation where the density is known, but the
model parameters need to be estimated, we define the non-regularized ob-
jective functional for the KDE-PE.

Definition 7.3.2. Let the forward problem be defined as in Definition 6.1.2.
Furthermore, let X be the microscopic observation data. Then we define the
inverse problem with kernel density estimate as the minimization problem to
estimate model parameter set Θ and bandwidth matrix H

{Θopt, Hopt} = arg min
Θ∈Rp,H∈R2×2

K (Θ, H) (7.50)

with the non-regularized nonlinear least square functional

K (Θ, H) :=‖ F (Θ)− udata(H) ‖2
2, (7.51)

where the observation data udata(H) are defined in (7.48), (7.49) and depend
explicitly on the bandwidth matrix H.
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The objective functional K (7.51) can be interpreted as the discrete equiv-
alent of the integrated squared error (ISE) (7.33) such that the bandwidth
selection within the parameter estimation methodology results in better es-
timations, i.e. smaller relative error errrel in the L2-norm, than obtaining the
bandwidth from the previous mentioned methods such as the Rule-of-Thumb
(7.37) as previously shown in the examples of Section 7.2.4.

Regularization of Kernel Density Estimation

However this could lead to a heavily over-smoothing, i.e large bandwidths H,
which can deteriorate the quality of the estimates of model parameters Θ.
For this reason we need to introduce an additional regularization term to the
objective functional K(Θ, H) in (7.51)

K (Θ, H) :=‖ F (Θ)− udata(H) ‖2
2 +pH ‖ H −H0 ‖2

2 (7.52)

with constant pH > 0 and the a-priori bandwidth H0 which can be any of the
previously mentioned bandwidth selections such as the Rule-of-Thumb (7.37).
With the additional regularization of the bandwidth we not only avoid over-
smoothing with large bandwidthsH but also avoid a possible under-smoothing
due to the introduced H0.
This enforces the bandwidth parameter H to be around the Rules-of-Thumb
bandwidth H0 which is already a decent bandwidth choice as we have shown
in example 9.
For large values pH > 0 , the term (7.52) enforces the bandwidth parameter
H to be close to the actual a-priori estimate H0.
A decrease of pH eases the restriction such that greater changes of H away
from H0 are allowed to "fine-tune" the kernel density estimate udata(H).

7.3.1 Numerical Simulation: KDE-PE Method

We will extend the two numerical test simulations from chapter 6.3 for the
one-dimensional and two-dimensional convection-diffusion equation by trans-
forming the used artificial observation data udata obtained through finite dif-
ference schemes to a microscopic sample with the acceptance-rejection method
and apply the two approaches of kernel density estimation to this sample as
described in the preceding section.
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One-dimensional

As forward problem we consider the following one-dimensional convection-
diffusion equation 

∂tu = D∂xxu− ∂x (vu) ,

u(x, 0) = u0(x),

∂u
∂x

∣∣
∂Ω

= 0

(7.53)

with diffusion coefficient D > 0 and velocity field function v(x) ∈ C2. We use
the multigrid method for the parameter estimation with the only difference
of using the modified objective functional (7.52) which contains the regular-
ization term for the bandwidth h > 0 and a-priori bandwidth h0 computed
according to the Rule-of-Thumb-method (7.37).
For the artificial observation data, we created a microscopic sample of size
N = 105 with the acceptance-rejection method and apply the kernel density
estimation with the reflection method as boundary effect correction (7.31).

Example 10. We consider the convection-diffusion equation (7.53) as for-
ward problem with the forward operator F defined according to the finite
difference scheme (3.22).
The artificial observation data have been computed for a diffusion coefficient
D = 4 and a velocity field function v(x) = c(x) = 15 sin(2πx) on the domain
Ω = [0, 1] and transformed into the microscopic observation data X through
acceptance-rejection method for N = 105 sample points per time t.
We then conduct the following two numerical experiments:

a) The parameter estimation (PE) according to Definition 6.1.3 with regu-
larized objective functional

K (Θ) =‖ F (Θ)− udata ‖2
2 +λ ‖ Θ ‖2

2 (7.54)

with the artificial macroscopic observation data udata.

b) KDE-parameter estimation (KDE-PE) according to Definition 7.3.2 with
regularized objective functional

K (Θ, h) =‖ F (Θ)− udata(h) ‖2
2 +λ ‖ Θ ‖2

2 +ph ‖ h− hROT ‖2
2 (7.55)

with regularization parameters λ > 0 and ph > 0, where the artificial
macroscopic data udata(h) are defined with (7.48), (7.49) where the reg-
ularization parameters have been estimated experimentally.

The results can be seen in Figure 7.8 where the relative error of each param-
eter is indicated.

249



Parameter Estimation with Kernel Density Estimation

Conclusion

The results obtained from example 10 for a) and b) are represented in Figure
7.8. We can infer from the results that the parameters from the parameter
estimation a) are recovered with a very low relative errors for the diffusion
coefficient errD = 0.1% and velocity field errv = 0.1%. The relative errors for
the KDE-PE method b) on the other hand are 4.2% for the diffusion coefficient
and 8.7% for the velocity field, which are higher than in a). This can be
explained by the fact that we did not use the artificial data udata as in a), but
created a microscopic sample set X which we then re-transformed back with
the kernel density estimation. These transformations naturally induce some
noise and error during the parameter estimation process which explains the
higher relative errors in the parameters.
Furthermore we remark that the estimated bandwidth h is slightly different
from the Rule-of-Thumb bandwidth h0. This can be explained by the fact that
the Rule-of-Thumb is only optimal for normal distributed densities but due to
the present convection term, the optimal bandwidth has a different value.

Figure 7.8: The relative errors of the estimated parameters: Diffusion coefficient D and
velocity field v. The parameter estimation method (PE) with artificial macroscopic observa-
tion data udata performs significantly better than the KDE-PE method (with |h− h0| = 0.022)
due to the induced noise and error because of the transformation between microscopic and
macroscopic data.
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Two-dimensional

Similar to the one-dimensional test equation, we now investigate the two-
dimensional convection-diffusion equation

∂tu = D4u− div (vu) ,

u(x, y, 0) = u0(x, y),

∂u
∂n

∣∣
∂Ω

= 0,

(7.56)

as the forward problem for D > 0 and velocity field function v ∈ C2. We
use the multigrid method for the parameter estimation with the modified

objective functional (7.52) with diagonal bandwidth matrix H =

(
h1 0

0 h2

)
and Rule-of-Thumb bandwidth HROT (7.42).
For the artificial observation data, we create a microscopic sample set of size
N = 107 with the acceptance-rejection method for different times t and apply
the kernel density estimation with the reflection method as boundary effect
correction (7.31).

Example 11. We consider the forward problem as the two-dimensional convection-
diffusion equation (7.56) with forward operator F defined according to the
finite difference scheme (3.24).
The artificial observation data have been computed for a diffusion coefficient
D = 1 and velocity field function

v(x, y) :=

(
−10 (x− 0.5) e−5(x−0.5)2−5(y−0.5)2

−10 (y − 0.5) e−5(x−0.5)2−5(y−0.5)2

)
(7.57)

on the domain Ω := [0, 1]× [0, 1] and transformed into microscopic observation
data X through the acceptance-rejection method for N = 107 sample points
per time t.
We then conduct the following two numerical experiments:

a) The parameter estimation (PE) according to Definition 6.1.3 with regu-
larized objective functional

K(Θ) =‖ F (Θ)− udata ‖2
2 +λ ‖ Θ ‖2

2 (7.58)

with artificial macroscopic observation data udata.

b) KDE-PE according to Definition 7.3.2 with regularized objective func-
tional

K(Θ, H) =‖ F (Θ)− udata(H) ‖2
2 +λ ‖ Θ ‖2

2 +pH ‖ H −HROT ‖2
2 (7.59)
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with regularization parameter λ > 0 and pH > 0, where the artificial
macroscopic data udata(H) are defined (7.48), (7.49). The regularization
parameters have been estimated experimentally.

The results can be seen in Figure 7.9, where the relative error of each pa-
rameter is indicated

Conclusion

The relative errors of the 2D problem is in general much higher than for
the 1D problem for both, the parameter estimation method with artificial
macroscopic observation data udata and the KDE-PE method with microscopic
observation data X .
However the discrepancy between these two methods is much bigger, with
the largest difference of relative errors for vy.
It is also worth mentioning that the difference between estimated bandwidth
matrix H and Rule-of-Thumb bandwidth matrix HROT is much larger with
‖ H −HROT ‖2= 0.107. This indicates that in spatial dimensions greater than
1 the estimated bandwidth matrixH improves the parameter estimation more
significantly than the Rules-of-Thumb method.

The numerical simulations of the KDE-PE method has shown that by allow-
ing the bandwidth to be treated as an additional unknown parameter in the
parameter estimation method with its own regularization term ph ‖ h −
hROT ‖2

2 regularization parameter ph ∈ R≥0 and a-priori computed Rule-of-
Thumb bandwidth hROT , we are able to use microscopic observation data for
the parameter calibration of macroscopic models and obtain satisfactory re-
sults.
In the next chapter we will make use of the KDE-PE method where we cal-
ibrate model parameters of the OOC-model with real observation data from
the laboratory experiments described in [31, 141] which are available in mi-
croscopic form.
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Figure 7.9: The relative errors of the estimated parameters: Diffusion coefficient D and
velocity field vx, vy. The parameter estimation method (PE) with artificial macroscopic

observation data udata performs significantly better than KDE-PE (with ‖ H − Ĥ0 ‖2= 0.107)
due to the induced noise and error because of the transformation between microscopic and
macroscopic data. Both methods however produce higher relative errors compared to the
one-dimensional parameter estimation problem.

253



Chapter 8

Numerical Implementation and
Results of Parameter Estimation
of OOC Model

The final chapter of this work makes use of all the techniques and methods
previously presented and tested to construct a meaningful parameter estima-
tion process for the full mathematical model (1.45)-(1.47) of the laboratory
experiment on the OOC.
As presented in Section 1.1, the observation available to us in form of the
video recording does not contain the complete domain of the OOC, but only
a small section, which contains part of the left and right chambers Ωl and Ωr

connected through one-dimensional micro channels.

OOC-model

We remind that the dynamics of cells and chemicals in the two-dimensional
chambers are described with the parabolic Keller-Segel like model (1.45)

∂tT = DT∆T − λT (ω)T,

∂tM = DM∆M − div (f (M,φ))

∂tφ = Dφ∆φ+ αφT − βφφ,

∂tω = Dω∆ω + αωM − βωω,

(8.1)



and for the one-dimensional channels we have either the parabolic Keller-
Segel like model (1.46)

∂tTc = DT∂xxTc − λT (ω)Tc,

∂tMc = DM∂xxMc − ∂xfc

∂tφc = Dφ∂xxφc + αφTc − βφφc,

∂tωc = Dω∂xxωc + αωMc − βωωc,

(8.2)

or the hyperbolic Cattaneo-like model (1.47)

∂tTc + ∂xv
T
c = −λT (ω)Tc,

∂tv
T
c + DT

τT
∂xTc = −vTc

τT
,

∂tωc = Dωc∂xxωc + αωMc − βcωc,

∂tMc + ∂xv
M
c = 0,

∂tv
M
c + DM

τM
∂xMc =

(
fc − vMc

)
1
τM
,

∂tφc = Dφc∂xxφc + αφTc − βφφc.

(8.3)

Simplifications

To simplify the parameter estimation and reduce computational time we pro-
pose the following simplifications to the model:

1. Parameter estimation method applied in one chamber only.

2. Excluding cytokine ω.

3. Tumour cells T are stationary.

4. Excluding chemoattractant φ.

The reasoning behind these simplifications are:

1. The first simplification is justified by the fact that no cell tracking data
are available within the one-dimensional micro channels [15] and intro-
ducing additional parameters such as the Kedem-Katchalsky parameter
K and the other micro channel specified parameters increases the com-
plexity of the parameter estimation unnecessary.

255



2. For second simplification we consider that no data are available about
cytokine ω.
The cytokine ω is directly involved in the decay rate of tumour cells T
which is not relevant for the time window in which the observation data
have been obtained and hence can be neglected [31].

3. The third simplification is based on the fact that in the laboratory ex-
periment, the tumour cells T appear almost stationary within the time
frame of the available video recording.
Inclusion is only necessary for experiment settings, where the tumour
cells are more mobile (see [15]).
For the experiment, where the tumour cells T are virtually stationary,
we can assume T (x, y, t) = T (x, y, 0) = T0 and exclude its partial differ-
ential equation.

4. The fourth and last simplification is the initial neglect of the diffusion
equation describing the dynamics of the chemoattractant φ.
Similar to the cytokine ω, no data are available for φ as well, making the
parameter estimation very challenging. But in contrast to the cytokine
ω which has almost no influence in the dynamics of the experiment for
the time interval we are working with [31, 141], the chemoattractant
field φ fundamentally dictates the dynamics of the immune cells M due
to the chemotactic function f := f̂ (M,φ)M .
As a result, we introduce the velocity field function v : Ω × [0,∞) → R2

with
v(x, y, t) := f̂ (M,φ) (8.4)

to replace the chemotactic dynamics induced by the chemoattractant φ
by the unknown parameter v, which can be used after the parameter
estimation in combination with diffusion equation of φ to obtain some
additional information about the chemoattractant φ and its model pa-
rameters.

Simplified Model for Parameter Estimation

Applying these ideas, we get the simplified model

∂tM = DM∆M − div (vM) (8.5)

with immune cell density M , diffusion coefficient DM > 0 and velocity field
function v.
We want to remark, that although we have introduced v in order to avoid
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the necessity of having information about the chemoattractant φ, the relation
between them through the chemoattractant equation

∂tφ = Dφ∆φ+ αφT0 − βφφ (8.6)

with
v = f̂ (M,φ) . (8.7)

can be used to infer additional information about the chemoattractant distri-
bution.

We have reduced the full model (1.45) to a single two-dimensional convection-
diffusion equation (8.5) with unknown parameters DM and v.
We can apply the multi-grid parameter estimation method on this problem
which includes the method of time-varying parameters of Section 6.2.5 and
the function reconstruction for the post-smoothing step of Section 6.2.6.
Our aim is to use the available observation data of the laboratory experiment
in order to parameter fit the mathematical model that describes the dynamics
of the real experiment. This way the mathematical model describes the real
behaviour on the OOC experiment and obtain feasible parameters in form
of the diffusion parameter DM and the velocity field parameter v which af-
terwards can be used to deduce the actual chemoattractant distribution on
the domain and recover some of the intrinsic parameters of the chemotactic
function χ.

8.1 Model And Data Preparation

Before we can proceed with the parameter estimation of the full model, we
need to make adjustments to the model and to the observation data.

Data Preparation

The data acquired through TrackMate© as described in Section 1.1 are mi-
croscopic data in form of trajectories of immune cells and tumour cells. More
precisely we have two sets M and T containing the tuples

(
k, x, y, T frame

)
labelling a cell with a number k ∈ N, its location (x, y) relatively to the cor-
responding video crop of the laboratory experiment (see Figure 1.8), and
the frame time T frame when it was registered, from frame = 1, . . . , 720, where
frames are 2 minutes apart from each other, thus T frame = 2 ∗ frame min.
Being able to follow the trajectories of each cell provides us with additional
information which can be used in certain methods such as time weighted
kernel density estimate [143] and directed kernel density estimation for time
series [86] but in our framework it is sufficient to have a density field for
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each time frame T frame for which we can use the kernel density estimation as
described in Section 7.1.
However there are two complications which need to be addressed in order
to have a consistent transformation between the trajectories and the density
estimates for each time frame T frame: boundary conditions and non-constant
mass.
As our data from the OOC experiment were acquired not from the whole chip
domain but only from a small region (the region of the video recording), we
do not have homogeneous Neumann boundary conditions as we assumed in
the numerical experiment in Chapter 3. At each boundary of the domain cells
can pass through freely.
This has two consequences which require a modification of our KDE-PE method
procedure.

1. Mass transfer through boundaries

The first consequence of not having homogeneous Neumann boundary condi-
tions at the outer boundary ∂outΩ is that the number of cells is not conserved
due to the income and outcome of the cells at the boundaries.
Up to this point we have applied the kernel density estimation (7.21) as a
method to estimate probability density functions f , i.e∫

Ω

f(x, y, t)dΩ =

∫
Ω

f(x, y, 0)dΩ = 1 for all t ∈ [0, T ]. (8.8)

This condition is not true for the solution u(x, y, t) of a convection-diffusion
equation for other than homogeneous Neumann boundary conditions.
For this reason we need to modify the kernel density estimate to take into
account the change of mass due to the flux of cells at the boundaries.

Definition 8.1.1 (Kernel Density Estimate for non-constant total mass). Let
X l = (k, x, y, tl) be a set of microscopic observation data of cells at time tl,
where each cell is labelled with k ∈ N, positioned at (xlk, y

l
k) at time tl. Then

we define the kernel density estimate û(x, y, tl)

ûH(x, y, tl) =
1

detH

Ml∑
k=1

KH

((
x− xlk, y − ylk

))
(8.9)

with bandwidth matrix H ∈ R2×2, where Ml ∈ N is the number of total cells
at time tl in the microscopic observation data X .

Remark 8.1.2. The difference between the definition of the multivariate ker-
nel density estimate (7.21) and (8.9) is that the latter is not normalized. In
(8.9) we take into account that the number of cells in the domain Ω can
change and thus the total mass of cells.
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Also, although we have different density estimates ûH(x, y, tl) (8.9) for each
time tl, where the number of cells varies with Ml, we choose a constant band-
width matrix H for all times t. This way we avoid creating a too huge dis-
crepancy of density estimates between times t. However this requires that
the number of cells Ml for each time tl is relatively large.

Remark 8.1.3. The density estimate ûH(x, y, tl) (8.9) is defined on a domain
Ω ⊂ R2, and as such needs to be modified for the domain Ω = [0, Lx] × [0, Ly]

to reduce the boundary effects.
The boundary at {Lx} × [0, Ly] is closed except at the entry areas of the one-
dimensional channels. However due to much faster migration of cells through
the channels, we assume also here closed boundaries.
Hence the reflective method (7.31) can be used for {Lx} × [0, Ly].
The outer boundaries δoutΩ are open and allow the income and outcome of
cells, thus a special treatment is not necessary. A possible improvement can
be to take advantage of the additional information from the trajectories of
each cell to improve the boundary values but we will not apply this idea in
the further calculations.

2. Boundary Condition

Firstly, we need to equip the full model (1.45) defined at the domain Ω :=

[0, Lx]× [0, Ly] with other than homogeneous Neumann boundary conditions:
Dirichlet boundary conditions or non-homogeneous Neumann boundary con-
ditions.
In the following we will refer with ∂outΩ := {0} × [0, Ly] ∪ [0, Lx] × {0, Ly} to
the outer boundaries of the domain Ω which are open and allow cells to move
through.

Dirichlet Boundary Condition

For the sake of an easy adjustment to our numerical methods we focus on
Dirichlet boundary conditions

u (x, y, t)|∂outΩ = g (x, y, t) , (8.10)

for an unknown function g : ∂outΩ× [0,∞)→ R defined on the outer boundary
∂outΩ. From a finite difference point of view, we need to modify the finite
difference scheme for the full model (3.24) with Dirichlet boundary condi-
tions (8.10). This can be easily done by setting the values uni,j on the outer
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boundary

un+1
i,j = g (xi, yj, tn+1) = gn+1

i,j , for

 i = Nx + 1, j = 0, . . . , Ny + 1,

j = {0, Ny + 1}, i = 0, . . . , Nx + 1.
(8.11)

For the unknown function g we can use the kernel density estimates ûH(x, y, tl)

(8.9) at the outer boundary ∂outΩ such that

uni,j = gni,j = ûH(xi, yj, tl), if tn = tl. (8.12)

For the in-between time values, a linear interpolation can be used between
the density estimates for each time l.

Non-Homogeneous Neumann Boundary Condition

We can also choose non-homogeneous Neumann boundary conditions

∂u

∂n
(x, y, t)

∣∣∣∣
δoutΩ

= p (x, y, t) , (8.13)

for an unknown flux function p : δoutΩ × [0,∞) → R defined at the outer
boundary ∂outΩ to take the flux of cells into account.
For the non-homogeneous Neumann boundary conditions we discretize (8.13)
and obtain ghost values

un+1
i,−1 = un+1

i,1 − 24ypn+1
i,0 ,

un+1
i,Ny+2 = un+1

i,Ny
+ 24ypn+1

i,Ny+1,

un+1
−1,j = un+1

1,j − 24xpn+1
0,j ,

(8.14)
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which include into the finite difference scheme (3.24). We show the additional
term exemplary for un+1

i,Ny+1 and get with (8.14)

un+1
i,Ny+1 = uni,Ny+1 +Dµx

[(
uni+1,Ny+1−2uni,Ny+1+uni−1,Ny+1

)
2

+

(
un+1
i+1,Ny+1−2un+1

i,Ny+1+un+1
i−1,Ny+1

)
2

]
+Dµy

[(
uni,Ny − u

n
i,Ny+1

)
+
(
un+1
i,Ny
− un+1

i,Ny+1

)]
−λx

2

(
f̂x,ni+1,Ny+1u

n
i+1,Ny+1 − f̂

x,n
i−1,Ny+1u

n
i−1,Ny+1

)
+λy

(
f̂ y,ni,Nyu

n
i,Ny

+ f̂ y,ni,Ny+1ui,Ny+1

)
+λx

2

(
|f̂x,ni+1,Ny+1|uni+1,Ny+1 − 2|f̂x,ni,Ny+1|uni,Ny+1 + |f̂x,ni−1,Ny+1|uni−1,Ny+1

)
+λy

(
|f̂ y,ni,Ny |u

n
i,Ny
− |f̂ y,ni,Ny+1|uni,Ny+1

)
+D
4t
4y

(
pni,Ny+1 + pn+1

i,Ny+1

)
.︸ ︷︷ ︸

additional boundary flux term

(8.15)
We can hence modify the boundary values such that

un+1,non-homogeneous
i,0 = un+1,homogeneous

i,0 −D4t4y
(
pni,0 + pn+1

i,0

)
,

un+1,non-homogeneous
i,Ny+1 = un+1,homogeneous

i,Ny+1 +D4t4y

(
pni,Ny+1 + pn+1

i,Ny+1

)
,

un+1,non-homogeneous
0,j = un+1,homogeneous

0,j −D 4t4x
(
pn0,j + pn+1

0,j

)
,

un+1,non-homogeneous
0,0 = un+1,homogeneous

0,0 −D4t
(

1
4x + 1

4y

) (
pn0,0 + pn+1

0,0

)
,

un+1,non-homogeneous
0,Ny+1 = un+1

0,Ny+1,homogeneous −D4t
(

1
4x −

1
4y

)(
pn0,Ny+1 + pn+1

0,Ny+1

)
,

(8.16)
for (0, j) for j = 1, . . . , Ny and (i, 0), (i, Ny + 1) for i = 1, . . . , Nx + 1.
To define the values of flux function p at the boundary we need information
about the flux at the boundary. However no observation data are available
outside the domain.
Nevertheless we propose an approach for the case where observation data
are available outside the computational domain Ω.
Data availability outside the domain is equivalent to the availability of the
ghost values un+1

i,−1, u
n+1
i,Ny+1, u

n+1
−1,j, ergo we can approximate the boundary flux

pn+1
i,j with a finite difference using the available ghost values.

Bandwidth

Lastly, we need to define the bandwidth matrix H.
Since we plug in H as additional parameters as described in the KDE-PE
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method, we use the a-prior bandwidth matrix Ĥ0 obtained by the Rule-of-
Thumb method (7.42).
In Figure 8.1 the density fields obtained according to the tracked trajectories
of the cells are shown for different times t.
Although the a-priori bandwidth matrix Ĥ0 has been used, one can clearly
deduce the dynamical behaviour of the immune cells M , showing a diagonal
migration from the top right side of the right chamber Ωr towards the left
chamber Ωl through the one-dimensional channels which we have not con-
sidered in our density estimate since no cell tracking is available within the
channels.
As the immune cells continue their migration diagonally on the left chamber
leaving the domain, we can see a accumulation of immune cell density M in
high concentration of tumour cells T .
These observations made solely based on the visual representation of the
kernel density estimates in Figure 8.1 correspond with the observation of the
trajectories of the cells.

8.2 Model Inference and Comparison

The introduction of different chemotactic terms f̂ in chapter 1.6 describes the
different characteristics and intrinsic mechanics of the chemotactic move-
ment of immune cells M in regards to the chemoattractant concentration φ.
We have presented five different chemotactic terms (1.52)-(1.56) for the OOC
model (1.45)-(1.47) with different model parameters to describe the dynami-
cal behaviour of the laboratory experiment on the OOC [31].
Fitting the available observation data udata to the models allows us to estimate
the intrinsic model parameters Θ but also gives us a measurement of the L2-
norm error between the data and the model solution through the objective
functional of the parameter estimation problem with

K0(Θ) =‖ F (Θ)− udata ‖2
2 . (8.17)

Choosing the model with the lowest error would be the "best fit" candidate
among all the other models and consequently describes the model best.
However, it is also logical that models that involve more model parameters
and hence more degrees of freedom, allow in many cases a better fit, i.e a
smaller discrepancy between the observation data and the numerical solu-
tions of the model [124].
The question that arises is which model does describe the actual reality in
the best way?
We remind that we have two goals in mathematically modelling:
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Tracked cells
Immune (red) and tumour (blue)

Density field of immune cells

(1): At frame 1 (T = 0min) (2): At frame 1 (T = 0min)

(3): At frame 200 (T = 398min) (4): At frame 200 (T = 398min)

(5): At frame 400 (T = 798min) (6): At frame 400 (T = 798min)

(7): At frame 720 (T = 1438min) (8): At frame 720 (T = 1438min)

Figure 8.1: left: Tracked immune and tumour cells of the video recording of the experiment
through TrackMate©. Right: Computed density fields by using the kernel density estimation
on the available cell location data.
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1. The development of a mathematical model able to describe the actual
experiment in a reliable way and keeping the complexity as small as
possible.

2. The model should be able to predict future events and unseen obser-
vations such that for different laboratory settings, thus different model
parameters, the model is still able to describe the real behaviour in an
approximated way.

These two objectives result in the model selection for inference and the model
selection for prediction [44]. Thus a good model must be based on more than
just the error. For this reason additional statistical measurements must be
taken, which are known as information criteria [2], which are designed to
balance between model complexity and good fit.
Information criteria are methods used to rank models and are derived from
decision theory and the minimization of some measure of information loss
[2].
The model that corresponds to the lowest information criteria value is taken
to be the best model from that given stand point.
There are a variety of information criteria to be found in the literature which
have benefits and disadvantages over one another, but we will restrict our-
selves with the two most commonly used criteria: The AIC (Akaike informa-
tion criterion) [3, 145] and BIC (Bayesian information criterion) [124].
In order to apply these criteria on our models, we first need to define the
likelihood function L for the models.

Definition 8.2.1 (Likelihood Function [106]). Let uni,j ≈ u (xi, yj, tn) be the ap-
proximated solution of the convection diffusion equation (6.1) with the finite
difference scheme (3.24) with model parameter set Θ. Furthermore let X be
the set of the microscopic observation data containing the tuples (xk, yk, tk)

representing the data location point (xk, yk) at time tk for k = 1, . . . , N . Then
the likelihood of Θ can be calculated for each data point as

P ((xk, yk, tk) |Θ) :=
u (xk, yk, tk)∫

Ω

u (x, y, tk) dΩ
. (8.18)

The Likelihood function L̂, which is the likelihood over all microscopic obser-
vation data, can be calculated through the product as

L̂ (Θ) :=
N∏
k=1

P ((xk, yk, tk) |Θ) (8.19)
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and the log-likelihood function ln L̂ as the sum

ln L̂ (Θ) =
N∑
k=1

lnP ((xk, yk, tk) |Θ) =
N∑
k=1

ln
u (xk, yk, tk)∫

Ω
u (x, y, tk) dΩ

(8.20)

The Likelihood function L̂ is equal to the probability that the microscopic data
X are observed when the model parameter is Θ.
We proceed with the definitions of two information criteria.

Definition 8.2.2 (Akaike information criterion (AIC) [3]). Let N ∈ N be the
number of model parameters Θ ∈ RN that need to be estimated and ln L̂ the
log-likelihood function for the model (8.20). Then the AIC value of the model
is defined as

AIC = 2N − 2 ln L̂, (8.21)

where the favourable model corresponds to the one with the minimum AIC
value.

Definition 8.2.3 (Bayesian information criterion (BIC) [2]). Let N ∈ N be the
number of model parameters Θ ∈ RN that need to be estimated, n ∈ N the
sample size of the microscopic observation data X and ln L̂ the log-likelihood
function for the model (8.20). Then the BIC value is defined as

BIC = N lnn− 2 ln L̂, (8.22)

where the favourable model corresponds to the one with the minimum BIC
value.

Comparing both definitions (8.21) and (8.22) the difference is found at the
factor of N where in AIC (8.21) it is 2, and in the definition of BIC (8.22) it is
lnn and hence depends on the sample size n.
This means that BIC penalizes models with a higher number of model param-
eters much stronger with respect to AIC [124].
In the following example we will investigate, in regards to our OOC-model
(1.45), whether it is possible to determine the correct type of chemotactic
function f̂ present in the two-dimensional chemotaxis equation (3.5).

Example 12. We consider the two-dimensional double-parabolic equation for
chemotaxis (3.5)  ∂tu = Du∆u− div (f) ,

∂tφ = Dφ∆φ+ αT − βφ,
(8.23)

on the two-dimensional domain Ω = [0, 50] × [0, 50] with cell density u(x, y, t)

and concentration of chemoattractant φ(x, y, t), growth rate α > 0, consump-
tion rate β > 0. In this model (8.23) we consider the tumour cell density
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T (x, y) to be stationary and to serve as a source for the chemoattractant φ.
The initial-boundary conditions are

u0(x, y) =

{
10−2, for 37.5 ≤ x ≤ 50, y ∈ [0, 50]

0 else,

φ0(x, y) = 0,

∂u

∂n

∣∣∣∣
∂Ω

= 0,

∂φ

∂n

∣∣∣∣
∂Ω

= 0

(8.24)

and with chemoattractant producing tumour cells T

T (x, y) = 10−3e−
1

100((x−5)2+(y−15)2) + 10−3e−
1

100((x−15)2+(y−10)2)

+10−3e−
1

100((x−45)2+(y−15)2).

(8.25)

For the chemotactic functions f = f̂u = χu we consider the following five
functions as already presented in Section 1.6:

I Basic model
χ := k1 (8.26)

with cellular drift velocity k1 ∈ R.

II Receptor saturation [140]

χ(φ) :=
k1

(k2 + φ)2 (8.27)

with k2 ∈ R>0 representing the receptor dissociation constant.

III Overcrowding [71])

χ(u, φ) :=
k1

(k2 + φ)2

(
1− u

umax

)
(8.28)

with maximum cell density umax ∈ R>0.

IV Interaction [49]

f̂ :=
k1

(k2 + φ)2∇φ+
η1

1 + η2u
∇u (8.29)

with repulsion strength between cells η1 ∈ R and interaction strength
η2 ∈ R>0
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V Interaction [49] (chemoattractant free)

f̂ :=
η1

(η2 + T )2
∇T. (8.30)

For the following investigation we assume that the diffusion coefficient Dφ =

200 and α = 1, β = 0.0001 are known and fixed, whereas only the diffusion
coefficient Du > 0 and the parameters in the chemotactic functions f̂ (8.26)-
(8.30) are unknown.
For the model calibration we create artificial observation data of (8.23) with
the receptor saturation as the chemotactic function (8.27) with the parame-
ters k1 and k2 as indicated in table 3.1 for the times t until t = 0.1 and add 2%

Gaussian noise.
We want to remark that the artificial observation data not only contain data
of u(x, y, t) but also of the chemoattractant φ(x, y, t) while in the real experi-
mental data no information about the chemoattractant is available.
We then proceed with the parameter estimation of (8.23) with all five chemo-
tactic functions (8.26)-(8.30) against the data to recover the parameters and
calculate the AIC (8.21) and BIC (8.22) which are presented in Figure 8.2.

Figure 8.2: Different AIC and BIC values of the 2D-doubly parabolic model (8.23) with
different chemotactic functions (8.26)-(8.30) against noisy artificial data of the receptor sat-
uration model (8.27).

Conclusion

The comparison of the AIC and BIC values in Figure 8.2 shows that the
Receptor-Saturation model (8.27) has the minimum (largest negative) AIC
and BIC value compared to the other models, indicating that even with in-
troduced noise, the values correctly indicate the model that represents the
artificial data which have been used.
Furthermore we can deduce that among all the other models, the AIC and BIC
value of the Overcrowding model (8.28) is very close to the AIC and BIC value
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of the original model. This can be explained by the fact that the only differ-
ence between the Receptor-Saturation model and the Overcrowding model

is the additional term of
(

1− u
umax

)
with parameter umax in the Overcrowd-

ing model which converges towards the Receptor-Saturation model for large
umax. However, the penalization of the additional parameter umax in the def-
inition of the AIC and BIC causes to favour the model with less parameters,
hence the correct receptor-saturation model.
The Basic model (8.26) on the other hand has the least negative number com-
pared to the other models which indicates that it is the least favourable model
despite having the lowest number of model parameters.
For the other two models, interaction model (8.29) and chemoattractant free
interaction model (8.30), the AIC and BIC values are less negative and hence
less favourable models. The interaction model due to the larger number of
model parameters and the chemoattractant free interaction model due to the
larger error despite the lower number of parameters. We also want to re-
mark that the ranking of models based on the AIC values and BIC values are
identical except for the chemoattractant free Interaction model (8.30) which
is the second least favourable model according to the AIC values but third
least favourable based on its BIC value. This can be explained by the fact
that BIC penalizes the number of parameter more severe than the AIC such
that the chemoattractant free Interaction model with N = 3 model parame-
ters are favoured over the interaction model with N = 5 model parameters.
We can conclude from this example that for the two-dimensional double-
parabolic model for chemotaxis (8.23) with chemotactic terms (8.26)-(8.30)
under the assumptions made in example 12 it is possible with the AIC and
BIC information criterion to differentiate between the models and to deter-
mine the underlying chemotactic term of which the artificial data have been
derived from.

8.3 Final Results

We summarize the parameter estimation settings for the OOC-model taking
into account all previously made assumptions and simplifications:

• The simplified model

∂tM = DM∆M − div (vM) (8.31)

with immune cell density M , diffusion coefficient DM > 0 and unknown
velocity field function v

• We consider several regions Ωcrop of the left chamber Ωl and right cham-
ber Ωr where we apply the parameter estimation method to reduce the
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computational costs involved and average the estimated parameters to
obtain averaged values for the whole domain.

• The objective functional of the parameter estimation method is (7.52)

K(Θ, H) =‖ F (Θ)− udata(H) ‖2
2 +λ ‖ Θ ‖2

2 +pH ‖ H −HROT ‖2
2, (8.32)

defined in the regions Ωcrop.

• The boundary conditions for the boundary ∂Ωcrop are the Dirichlet bound-
ary conditions defined in (8.12).

• In order to further reduce the complexity of the system, we assume that
the velocity field v is constant in time. This might not be true for long
time scale problems but for the observation data available to us for a
time range of just 24 hours, this assumption is valid, also due to the
fact that tumour cells are producers of chemoattractant φ and mostly
stationary and that the diffusion of chemical is slow enough to not affect
the chemoattractant gradient too much during the time interval we are
investigating.

Initialization of Model Calibration

As for the initial guess for the parameter estimation method, we will use the
parameter values used in the numerical experiment in chapter 3 which can
be found in table 3.1 and only allow the range of parameter values to be
around the same magnitude. For the diffusion coefficient of the immune cells
DM we assume initial value DM = 9 · 102 µm2

s
and allow the parameter only to

range between 102 and 104.
Furthermore we want to remark that a direct model inference with AIC (8.21)
and BIC (8.22) can not be investigated because of the simplification made.
The model does not directly depend on the chemotactic terms χ, anymore,
which defines the different models we are using. However a modification
of the information criteria can be made that takes into account the relation
between the velocity field v and the chemotactic term χ which we will not
investigate here.

Domain Decomposition

In order to reduce computational cost, we will divide the computational do-
main Ωcrop into smaller regions Ωi and conduct the parameter estimation on
each region separately. The velocity field of the whole domain Ωcrop is hence-
forth defined as the union of the velocity fields defined on each subdomain
Ωi.
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For the diffusion coefficient DM > 0 we average its estimate over all subdo-
mains.

Initialization of Velocity Field

Because the initial guess for the parameter estimation method is crucial to
obtain feasible and satisfactory results, we propose the following initial guess
for the velocity field based on the following assumptions:

i) According to the trajectories of the cells (see Figure 1.8 on the left) we
can assume that in the right chamber the velocity field is constantly
diagonally oriented. This is also partly true for the left chamber. This
can be explained by the fact that the tumour cells are initially located in
the reservoir, hence the highest concentration of chemoattractant must
be present in that location. Considering the location of the domain Ωcrop

(see Figure 1.8 on the right) this explains the diagonal movement of
immune cells.

ii) Tumour cells are present in the left chamber, producing chemoattrac-
tant as well which causes some immune cells to migrate towards them.
The evolution of chemoattractant is based on the parabolic reaction-
diffusion equation (1.45).

Considering assumption i) we can propose that one component of the velocity
field is defined as the constant velocity field

v(1) := kv1

(
−1

−1

)
(8.33)

with unknown constant kv1 > 0.
The second component is based on assumption ii) as we assume

vi,(2) := −kv2

(
(x− xi) e−kv3((x−xi)2+(y−yi)2)

(y − yi) e−kv3((x−xi)2+(y−yi)2)

)
(8.34)

with unknown constants kv2 , kv3 > 0 and tumour positions (xi, yi).

For the right chamber we assume that only v(1) (8.33) is present, where for
the left chamber we have a superposition of v(1) and the summation over all
tumour positions (xi, yi) of vi,(2) (8.34).

Model Calibration and Preliminary Results

The parameter estimation consists of two parts.
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• We apply the parameter estimation method with objective functional
(8.32), observation data (8.9) on several subdomains Ωi with Dirichlet
boundary conditions (8.10) for the parameter Θi = (DM , kv1 , kv2 , kv3) for
each subdomain separately.

• We average DM over all subdomains and apply a second parameter es-
timation method with objective functional (8.32), observation data (8.9)
on the whole left and right chamber Ωl,Ωr for the parameter Θ = v.
As initial guess the velocity field v obtained from the first parameter
estimation methods is used.

The corrected velocity field v with the averaged diffusion coefficient will be
used for the model (8.5).
The obtained density solutions M will then be transformed into microscopic
data with the acceptance-rejection method and compared with the real cell
positions.
For the averaged diffusion coefficient of the immune cells we obtain DM =

9, 8892 · 103 µm2

s
.

In Figure 8.3 we directly compare visually the tracked immune and tumour
cells on the left with immune cells artificially derived from the model (8.31)
with the parameter estimation solutions for diffusion coefficient DM and ve-
locity field, through acceptance-rejection method. We choseN = 230 artificial
immune cells for both the left and right chamber which explains the larger
number of immune cells in the left domain compared to the tracked immune
cells. As shown in Figure 8.3, the artificial immune cells coincide with the
actual tracked immune cells. However we need to remark, that we cannot
claim that this simplified model is reflecting the real model. The simplifi-
cation made are based solely on assumptions made from the results of the
laboratory experiment described in [15, 31, 141]. Additionally, no data are
available about the chemoattractant distribution and the chemotactic move-
ment of cells is only deduced by assumption i) and ii).

Reconstruction of Chemoattractant Distribution

The final part of the model calibration is dedicated to the reconstruction of
the chemoattractant distribution φ. As mentioned before, the laboratory ex-
periments described in [15, 31, 141] do not provide any data on the chemoat-
tractant distribution. This has motivated the use of a simplified model (8.31)
for the model calibration where the chemotactic function f has been replaced
by a general velocity field v which has been further assumed to be constant
in time t to reduce computational costs. However, we can use the relation

v := f̂ = χ∇φ (8.35)
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to infer additional information about the chemoattractant distribution φ.
For that we use the estimation of the model calibration for v from the previ-
ous section in a second parameter estimation problem

min
Θ
K (Θ) = min ‖ v − χ∇∆x,∆yφ ‖2

2 +λ1 ‖ φ ‖2
2 +λ2 ‖ Tφ ‖2

2 (8.36)

with model parameter set Θ = (φ, χ), Tikhonov regularization matrix T as
second-order-difference operator, and regularization parameters λ1, λ2 > 0,
where ∇∆x,∆y denotes the discretization of φ:

∇∆x,∆yφ =

(
φi+1,j−φi−1,j

2∆x
φi,j+1−φi,j−1

2∆y

)
. (8.37)

In the same way as for the model calibration for the diffusion DM and velocity
field v, we apply the parameter estimation method on several subdomains Ωi

of Ωl and Ωr separately.
Regarding the chemotactic sensitivity function χ, we choose for each subdo-
main Ωi a constant χi ∈ R in order to reduce the complexity of the parameter
estimation method.
Furthermore, it is also necessary to specify boundary conditions on each sub-
domain Ωi for φ.
We make use of the assumption i) previously used for the initialization of the
velocity field in (8.33) and set for the left and right chamber Ωl, Ωr

φl|δΩl = −kv1 (x− y) + Cφl ,

φr|δΩr = −kv1 (x− y) + Cφr
(8.38)

with constant kv1 ∈ R≥0 which has already been estimated in the model cali-
bration and Cφl , Cφr ∈ R≥0 which can be chosen arbitrarily but require

kv1 (x− y) + Cφl > 0, for (x, y) ∈ δΩl,

kv1 (x− y) + Cφr > 0, for (x, y) ∈ δΩr,
(8.39)

in order to guarantee φ > 0 for the whole domain Ω. We choose Cφl = Cφr =

105.

Results: The reconstructed chemoattractant distribution φ is shown in Fig-
ure 8.4. The optimization methods (MGPE with Levenberg-Marquardt and
Gauss-Newton smoother) have not been able to converge due to the possi-
ble numerous local minima, hence a variety of randomized initial guesses Θ0

have been used and the solution of the parameter estimation with smallest
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value of K(θ) chosen.
From the reconstructed chemoattractant field we can deduce that in the
right chamber, the concentration is spreading from the bottom-left corner
and flows diagonally through the whole domain. The spreading of φ is not
regularly though and shows regions of much lower chemoattractant such as
in the top-right corner.
Furthermore, we can also see that the chemoattractant is entering the right
domain through the micro-channels.
Regarding the left chamber, the distribution of chemoattractant φ is not as
clear.
There are small areas of high concentrations in the bottom part, which cor-
responds with the location of tumour cells. However there seems to be an
unusual low concentration at the bottom border of the left chamber and in
the middle.
Additionally, a higher concentration is present around the top area of the left
chamber, despite the fact that a very small number of tumour cells are lo-
cated in this area which could have caused an increase of the concentration
of chemoattractant.
Overall, the reconstructed chemoattractant distribution φ corresponds with
the assumptions made on the velocity field v and the dynamics shown in the
observation data of the immune cells but we need to remark that we were not
able to obtain convergence and due to the chosen initial guesses used for the
parameter estimation of φ we have induced a bias in the reconstruction of
the chemoattractant distribution. This makes the preliminary chemoattrac-
tant distribution reconstruction only to a certain extent meaningful.
Some regions also show unusual low and high concentration of φ which might
be caused by not estimated values of φ in regions where not much observa-
tion data have been available.
Additional observation data and more information about the chemoattractant
distribution in the laboratory experiments on the OOC can improve the gen-
eral reconstruction of chemoattractant.

8.4 Computational Time

All the numerical simulations were performed in MATLAB© and performed
on an Intel(R) Core(TM) i7-10750H CPU @ 2.6GHz and on a NVIDIA RTX
2070. The simulation was performed on the complete domain with [1361 ×
1702]µm (two chambers) for mesh grid size 4x = 4y = 2.5.
The time step size is chosen to respect stability condition:

4t = 0.9

(
DM

4y2

max
i,j

vx,ni,j 4y+max
i,j

vy,ni,j 4x
+DM

4x2

max
i,j

vx,ni,j 4y+max
i,j

vy,ni,j 4x

)
and depends on
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the magnitude of the velocity field. However, we can say that in average
it takes 10 minutes to solve the forward problem once for time t = 720.
Despite the fact that the numerical computation of the solution of the for-
ward problem (8.5) is relatively fast, the model calibration is significantly
more time consuming due to the fact that the forward problem has to be com-
puted several times during each iteration of the optimization process. More
precisely the optimization method used in this work computes the gradient
function for each unknown parameter. If we assume that the calculation of
the solution of the forward problem takes the computational time of t = tmax
and that we choose a constant time step 4t throughout the whole computa-
tions, then for N -unknown parameters, the forward problem has to be solved
at least 2N times (to compute an approximation of the derivative of a param-
eter) for a single optimization iteration. The computational time squares for
2-dimensional problems where the velocity field v is two-dimensional. If we
only consider the forward problem that contributes to the computational time
for one optimization iteration, then the time is at least (2N)2tmax, which does
not consider other operations involved in the optimization method such as
matrix-vector products which are needed for solving linear equation systems
inside the optimization methods. Application of multigrid reduces computa-
tional time on the coarsest grid up to 8.9 times (depending on the size of
the finest grid). Additionally, the parallel computation of the sub-domains
furthermore reduces computational times, making it possible to calibrate the
model more efficiently.
For the multi-domain transmission model for OOC that includes one-dimensional
channels, we are able to include them without any large increase in compu-
tational time, although in parameter estimation methods the introduction of
additional parameters increases the overall computational time.
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Tracked cells
Immune (red) and tumour (blue)

Particle representation of
artificial immune cells

(1): At frame 1 (T = 0). (2): At frame 1 (T = 0).

(3): At frame 200 (T = 398min). (4): At frame 200 (T = 398min).

(5): At frame 400 (T = 798min). (6): At frame 400 (T = 798min).

(7): At frame 720 (T = 1438min). (8): At frame 720 (T = 1438min).

Figure 8.3: left: Tracked immune and tumour cell of the video recording of the experiment
through TrackMate©. Right: Artificially created immune cells through model and derivation
of particle representation with acceptance-rejection method for a fixed number of immune
cells N = 230 for both the left and right domain.
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Chemoattractant Reconstruction

Figure 8.4: Reconstruction of chemoattractant distribution φ through parameter estima-
tion with (8.36) with a-priori estimated velocity field v from (8.32). Due to not obtained
convergence, the distribution is only to a limited extent meaningful. Right chamber: φ is
concentrated in the left bottom of the domain. Left chamber: Highest concentration are con-
centrated around three areas in the bottom where also tumour cells are located. However,
concentration peaks are much larger in the bottom area and the higher concentration in the
top do not agree with the dynamics shown by immune cells M .
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Conclusion and Future Research

The main feature of this thesis was the development of the following simula-
tion tools:

• A mathematical model of chemotaxis to describe cell movements and
interactions inside a microfluidic chip environment.

• A robust parameter estimation method which can be used to fit the
model parameters against real microscopic data obtained in experi-
ments.

• A reliable model inference to choose among different chemotactic func-
tions and infer the intrinsic key features that are present.

• A particle representation in order to visually compare simulation with
laboratory experiments.

• An attempt to reconstruct the chemoattractant distribution, for which
no data were available.

We managed to simulate the microfluidic chip environment with its specific
geometric features with two species of living cells moving in it similar to the
experiment conducted on the OOC.
Moreover, we are also able to simulate more complicated situations where
more than two cells and chemicals are present and modify the model to en-
compasses drug administrations and extend the chemotactic functions to in-
clude more intrinsic biological mechanisms.
With the inclusion of the multigrid method into the parameters estimation
framework we are able to recover model parameters of highly convective dy-
namics which are often the case for chemotaxis and reduce computational
time tremendously.
The numerical tests with increasing complexity show that our multigrid pa-
rameter estimation method with appropriate regularization is capable to re-
cover the model parameters with a sufficiently high accuracy although during
the tests it became clear that there are certain limits when noise is present
and the initial guess is too far away from the actual optimal values. Espe-
cially in 2D these limits become apparent however the errors are acceptable.
By introducing the kernel density estimates into the parameter estimation
framework, we successfully extended the fitting of data for microscopic data.
However it becomes apparent that with a limited number of observation data,
the quality of the parameter estimation suffers.
These two simulation tools, the mathematical model of the OOC and robust
parameter estimation method, we tried to fit the available data in form of
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cell positions to recover the model parameters. Although the data are lim-
ited to a number of cell positions with no information about the chemicals
available, we managed with certain assumptions, to obtain some parameter
values which can give some valuable insight about the present dynamics of
the experiment.
Nevertheless, the choice of a continuous model to reproduce an experiment
in a confined environment, with a relatively small number of cells is motivated
by the fact that we want to describe the phenomena of immunosurveillance
of cancer in tissues, where billions of cells are present.
With improved cell tracking and more data we could overcome the many chal-
lenges we faced during the data fitting process and make better inferences
about the intrinsic cell mechanics within the experiment.
The simulation tool we developed are promising enough and can greatly con-
tribute to the further advancement in the field of Organs-on-Chips.
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